总结——01背包问题 (动态规划算法)

总结——01背包问题 (动态规划算法)0-1背包问题:给定n种物品和一个容量为C的背包,物品i的重量是wi,其价值为vi。问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

0-1 背包问题:给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。

问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?

分析一波,面对每个物品,我们只有选择拿取或者不拿两种选择,不能选择装入某物品的一部分,也不能装入同一物品多次。

解决办法:声明一个 大小为  m[n][c] 的二维数组,m[ i ][ j ] 表示 在面对第 i 件物品,且背包容量为  j 时所能获得的最大价值 ,那么我们可以很容易分析得出 m[i][j] 的计算方法,

(1). j < w[i] 的情况,这时候背包容量不足以放下第 i 件物品,只能选择不拿

m[ i ][ j ] = m[ i-1 ][ j ]

(2). j>=w[i] 的情况,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更大的价值。

如果拿取,m[ i ][ j ]=m[ i-1 ][ j-w[ i ] ] + v[ i ]。 这里的m[ i-1 ][ j-w[ i ] ]指的就是考虑了i-1件物品,背包容量为j-w[i]时的最大价值,也是相当于为第i件物品腾出了w[i]的空间。

如果不拿,m[ i ][ j ] = m[ i-1 ][ j ] , 同(1)

究竟是拿还是不拿,自然是比较这两种情况那种价值最大。

由此可以得到状态转移方程:

if(j>=w[i])
    m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);
else
    m[i][j]=m[i-1][j];

例:0-1背包问题。在使用动态规划算法求解0-1背包问题时,使用二维数组m[i][j]存储背包剩余容量为j,可选物品为i、i+1、……、n时0-1背包问题的最优值。绘制

价值数组v = {8, 10, 6, 3, 7, 2},

重量数组w = {4, 6, 2, 2, 5, 1},

背包容量C = 12时对应的m[i][j]数组。

0 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 8 8 8 8 8 8 8 8 8
2 0 0 0 8 8 10 10 10 10 18 18 18
3 0 6 6 8 8 14 14 16 16 18 18 24
4 0 6 6 9 9 14 14 17 17 19 19 24
5 0 6 6 9 9 14 14 17 17 19 21 24
6 2 6 8 9 11 14 16 17 19 19 21 24

(第一行和第一列为序号,其数值为0)

如m[2][6],在面对第二件物品,背包容量为6时我们可以选择不拿,那么获得价值仅为第一件物品的价值8,如果拿,就要把第一件物品拿出来,放第二件物品,价值10,那我们当然是选择拿。m[2][6]=m[1][0]+10=0+10=10;依次类推,得到m[6][12]就是考虑所有物品,背包容量为C时的最大价值。

#include <iostream>
#include <cstring>
using namespace std;


const int N=15;


int main()
{
    int v[N]={0,8,10,6,3,7,2};
    int w[N]={0,4,6,2,2,5,1};


    int m[N][N];
    int n=6,c=12;
    memset(m,0,sizeof(m));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=c;j++)
        {
            if(j>=w[i])
                m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);


            else
                m[i][j]=m[i-1][j];
        }
    }


    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=c;j++)
        {
            cout<<m[i][j]<<' ';
        }
        cout<<endl;
    }


    return 0;
}

到这一步,可以确定的是可能获得的最大价值,但是我们并不清楚具体选择哪几样物品能获得最大价值。

另起一个 x[ ] 数组,x[i]=0表示不拿,x[i]=1表示拿。

m[n][c]为最优值,如果m[n][c]=m[n-1][c] ,说明有没有第n件物品都一样,则x[n]=0 ; 否则 x[n]=1。当x[n]=0时,由x[n-1][c]继续构造最优解;当x[n]=1时,则由x[n-1][c-w[i]]继续构造最优解。以此类推,可构造出所有的最优解。(这段全抄算法书,实在不知道咋解释啊。。)

void traceback()
{
    for(int i=n;i>1;i--)
    {
        if(m[i][c]==m[i-1][c])
            x[i]=0;
        else
        {
            x[i]=1;
            c-=w[i];
        }
    }
    x[1]=(m[1][c]>0)?1:0;
}

例:

某工厂预计明年有A、B、C、D四个新建项目,每个项目的投资额Wk及其投资后的收益Vk如下表所示,投资总额为30万元,如何选择项目才能使总收益最大?

Project

Wk

Vk

A

15

12

B

10

8

C

12

9

D

8

5

结合前面两段代码

#include <iostream>
#include <cstring>
using namespace std;

const int N=150;

int v[N]={0,12,8,9,5};
int w[N]={0,15,10,12,8};
int x[N];
int m[N][N];
int c=30;
int n=4;
void traceback()
{
    for(int i=n;i>1;i--)
    {
        if(m[i][c]==m[i-1][c])
            x[i]=0;
        else
        {
            x[i]=1;
            c-=w[i];
        }
    }
    x[1]=(m[1][c]>0)?1:0;
}

int main()
{


    memset(m,0,sizeof(m));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=c;j++)
        {
            if(j>=w[i])
                m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);

            else
                m[i][j]=m[i-1][j];
        }
    }/*
    for(int i=1;i<=6;i++)
    {
        for(int j=1;j<=c;j++)
        {
            cout<<m[i][j]<<' ';
        }
        cout<<endl;
    }
*/
    traceback();
    for(int i=1;i<=n;i++)
        cout<<x[i];
    return 0;
}

输出x[i]数组:0111,输出m[4][30]:22。

得出结论:选择BCD三个项目总收益最大,为22万元。

不过这种算法只能得到一种最优解,并不能得出所有的最优解。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/164394.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • java用户态和内核态「建议收藏」

    java用户态和内核态「建议收藏」在&lt;深入理解java虚拟机&gt;这本书上多次看到用户态和内核态两个名词,虽然大概能明白意思.但对于两者具体的定义和区别还是比较,特此查阅之后记录.内核态(KernelMode)与用户态(UserMode)内核态:CPU可以访问内存所有数据,包括外围设备,例如硬盘,网卡.CPU也可以将自己从一个程序切换到另一个程序用户态:只能受限的访问内存,且不允许访问外…

  • 在关系数据库设计理论中_数据库关系理论

    在关系数据库设计理论中_数据库关系理论一、关系模式    1、关系模式:是对一个关系的描述    2、关系模式的一般形式:R(U,D,DOM,F)       R ==>关系名     

    2022年10月10日
  • JavaScript 高级程序设计(第3版)

    JavaScript 高级程序设计(第3版)内容简介ECMAScript5和HTML5在标准之争中双双胜出,使大量专有实现和客户端扩展正式进入规范,同时也为JavaScript增添了很多适应未来发展的新特性。《JavaScript高级程序设计(第3版)》这一版除增加5章全新内容外,其他章节也有较大幅度的增补和修订,新内容篇幅约占三分之一。全书从JavaScript语言实现的各个组成部分——语言核心、DOM、BOM、事件模…

  • [Unity面试] 2022年Unity面试题分享「建议收藏」

    [Unity面试] 2022年Unity面试题分享「建议收藏」2022Unity面试题分享建议收藏

  • 如何设置eclipse代码自动补全「建议收藏」

    如何设置eclipse代码自动补全「建议收藏」打开Eclipse-&amp;gt;Window-&amp;gt;Perferences找到Java下的 Editor下的 ContentAssist, 右边出现的选项中,有一个AutoactivationtriggersforJava:可以看到在默认情况下只有一个&quot;.“存在。表示:只有输入”.&quot;之后才会有代码提示在AutoactivationtriggersforJ…

  • 百度分享异步加载问题、分页,无效果解决[通俗易懂]

    百度分享异步加载问题、分页,无效果解决[通俗易懂]使用百度分享的时候,如果所涉及到的html部分是后加载进来的,如ajax等异步请求成功后,加载进来,那么百度分享就有可能出现错误。我在使用的时候,遇到了两个问题。在这里记录一下。1、无法把所需要分享的内容传值到百度分享里。  百度分享的配置里有两个值,bdText,bdDesc,这两个内容,分别分享标题和内容。  内容是异步加载进来的,所以在百度分享相关代码是在加载成功后运

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号