【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]问题描述有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?为方便讲解和理解,下面讲述的例子均先用具体的数字代入,即:eg:number=4,capacity=8i(物品编号) 1 2 3 4 w(体积) 2 3 4 5 v(价值) 3 4 5 6 总…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

问题描述

有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

为方便讲解和理解,下面讲述的例子均先用具体的数字代入,即:eg:number=4,capacity=8

i(物品编号) 1 2 3 4
w(体积) 2 3 4 5
v(价值) 3 4 5 6

 

总体思路

根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

动态规划的原理

动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

背包问题的解决过程

在解决问题之前,为描述方便,首先定义一些变量:Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积,定义V(i,j):当前背包容量 j,前 i 个物品最佳组合对应的价值,同时背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品选或不选)。

1、建立模型,即求max(V1X1+V2X2+…+VnXn);

2、寻找约束条件,W1X1+W2X2+…+WnXn<capacity;

3、寻找递推关系式,面对当前商品有两种可能性:

  • 包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);
  • 还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}。

其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i),但价值增加了v(i);

由此可以得出递推关系式:

  • j<w(i)      V(i,j)=V(i-1,j)
  • j>=w(i)     V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}

这里需要解释一下,为什么能装的情况下,需要这样求解(这才是本问题的关键所在!):

可以这么理解,如果要到达V(i,j)这一个状态有几种方式?

肯定是两种,第一种是第i件商品没有装进去,第二种是第i件商品装进去了。没有装进去很好理解,就是V(i-1,j);装进去了怎么理解呢?如果装进去第i件商品,那么装入之前是什么状态,肯定是V(i-1,j-w(i))。由于最优性原理(上文讲到),V(i-1,j-w(i))就是前面决策造成的一种状态,后面的决策就要构成最优策略。两种情况进行比较,得出最优。

4、填表,首先初始化边界条件,V(0,j)=V(i,0)=0;

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

然后一行一行的填表:

  • 如,i=1,j=1,w(1)=2,v(1)=3,有j<w(1),故V(1,1)=V(1-1,1)=0;
  • 又如i=1,j=2,w(1)=2,v(1)=3,有j=w(1),故V(1,2)=max{ V(1-1,2),V(1-1,2-w(1))+v(1) }=max{0,0+3}=3;
  • 如此下去,填到最后一个,i=4,j=8,w(4)=5,v(4)=6,有j>w(4),故V(4,8)=max{ V(4-1,8),V(4-1,8-w(4))+v(4) }=max{9,4+6}=10……

所以填完表如下图:

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

5、表格填完,最优解即是V(number,capacity)=V(4,8)=10。

 

代码实现

为了和之前的动态规划图可以进行对比,尽管只有4个商品,但是我们创建的数组元素由5个。

#include<iostream>
using namespace std;
#include <algorithm>

int main()
{
	int w[5] = { 0 , 2 , 3 , 4 , 5 };			//商品的体积2、3、4、5
	int v[5] = { 0 , 3 , 4 , 5 , 6 };			//商品的价值3、4、5、6
	int bagV = 8;					        //背包大小
	int dp[5][9] = { { 0 } };			        //动态规划表

	for (int i = 1; i <= 4; i++) {
		for (int j = 1; j <= bagV; j++) {
			if (j < w[i])
				dp[i][j] = dp[i - 1][j];
			else
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
		}
	}

	//动态规划表的输出
	for (int i = 0; i < 5; i++) {
		for (int j = 0; j < 9; j++) {
			cout << dp[i][j] << ' ';
		}
		cout << endl;
	}

	return 0;
}

 

背包问题最优解回溯

通过上面的方法可以求出背包问题的最优解,但还不知道这个最优解由哪些商品组成,故要根据最优解回溯找出解的组成,根据填表的原理可以有如下的寻解方式:

  • V(i,j)=V(i-1,j)时,说明没有选择第i 个商品,则回到V(i-1,j);
  • V(i,j)=V(i-1,j-w(i))+v(i)时,说明装了第i个商品,该商品是最优解组成的一部分,随后我们得回到装该商品之前,即回到V(i-1,j-w(i));
  • 一直遍历到i=0结束为止,所有解的组成都会找到。

就拿上面的例子来说吧:

  • 最优解为V(4,8)=10,而V(4,8)!=V(3,8)却有V(4,8)=V(3,8-w(4))+v(4)=V(3,3)+6=4+6=10,所以第4件商品被选中,并且回到V(3,8-w(4))=V(3,3);
  • 有V(3,3)=V(2,3)=4,所以第3件商品没被选择,回到V(2,3);
  • 而V(2,3)!=V(1,3)却有V(2,3)=V(1,3-w(2))+v(2)=V(1,0)+4=0+4=4,所以第2件商品被选中,并且回到V(1,3-w(2))=V(1,0);
  • 有V(1,0)=V(0,0)=0,所以第1件商品没被选择。

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

 

代码实现

背包问题最终版详细代码实现如下:

#include<iostream>
using namespace std;
#include <algorithm>

int w[5] = { 0 , 2 , 3 , 4 , 5 };			//商品的体积2、3、4、5
int v[5] = { 0 , 3 , 4 , 5 , 6 };			//商品的价值3、4、5、6
int bagV = 8;					        //背包大小
int dp[5][9] = { { 0 } };			        //动态规划表
int item[5];					        //最优解情况

void findMax() {					//动态规划
	for (int i = 1; i <= 4; i++) {
		for (int j = 1; j <= bagV; j++) {
			if (j < w[i])
				dp[i][j] = dp[i - 1][j];
			else
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
		}
	}
}

void findWhat(int i, int j) {				//最优解情况
	if (i >= 0) {
		if (dp[i][j] == dp[i - 1][j]) {
			item[i] = 0;
			findWhat(i - 1, j);
		}
		else if (j - w[i] >= 0 && dp[i][j] == dp[i - 1][j - w[i]] + v[i]) {
			item[i] = 1;
			findWhat(i - 1, j - w[i]);
		}
	}
}

void print() {
	for (int i = 0; i < 5; i++) {			//动态规划表输出
		for (int j = 0; j < 9; j++) {
			cout << dp[i][j] << ' ';
		}
		cout << endl;
	}
	cout << endl;

	for (int i = 0; i < 5; i++)			//最优解输出
		cout << item[i] << ' ';
	cout << endl;
}

int main()
{
	findMax();
	findWhat(4, 8);
	print();

	return 0;
}

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/164393.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 网络攻防研究第001篇:尝试暴力破解某高校研究生管理系统学生密码

    网络攻防研究第001篇:尝试暴力破解某高校研究生管理系统学生密码前言如果你是在校大学生,而且还对网络攻防比较感兴趣的话,相信你最开始尝试渗透的莫过于所在院校的学生管理系统。因为一般来说这样的系统往往比较薄弱,拿来练手那是再合适不过的了。作为本系列的第一篇文章,我将会利用暴力破解的方式,尝试对某高校的研究生管理系统的学生密码进行破解。由于这个管理系统的网站属于该高校的内网资源,外网是无法访问的,因此大家就不要尝试按照文中的内容来对文中出现的网址…

  • 二叉树 二叉搜索树_判断二叉树是否是二叉排序树

    二叉树 二叉搜索树_判断二叉树是否是二叉排序树原题链接一棵二叉搜索树可被递归地定义为具有下列性质的二叉树:对于任一结点,其左子树中所有结点的键值小于该结点的键值;其右子树中所有结点的键值大于等于该结点的键值;其左右子树都是二叉搜索树。所谓二叉搜索树的“镜像”,即将所有结点的左右子树对换位置后所得到的树。给定一个整数键值序列,现请你编写程序,判断这是否是对一棵二叉搜索树或其镜像进行前序遍历的结果。输入格式:输入的第一行给出正整数 N(≤1000)。随后一行给出 N 个整数键值,其间以空格分隔。输出格式:如果输入序列是对一棵二叉搜索树或

  • 多项分布和的分布_bernoulli多项式

    多项分布和的分布_bernoulli多项式摘要纠错编辑摘要二项分布的典型例子是扔硬币,硬币正面朝上概率为p,重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见伯努利实验定义)  把二项分布公式再推广,就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n

    2022年10月11日
  • vue的$on方法_riscv和arm指令对比

    vue的$on方法_riscv和arm指令对比v-on监听事件可以用v-on指令监听DOM事件,并在触发时运行一些JavaScript代码。事件代码可以直接放到v-on后面,也可以写成一个函数。示例代码如下:<divid

  • LaTeX数学公式编辑(1)——行内公式&行间公式「建议收藏」

    LaTeX数学公式编辑(1)——行内公式&行间公式「建议收藏」1.行内公式2.行间公式2.1单行编号2.2单行不编号2.3多行编号2.4多行不编号3.说明4.参考文献对数学公式的排版,可以说是LaTeX中最精彩的部分.首先说需要注意的问题.数学公式中有时候会出现文字(中文或英文),需要将文字用命令\text{…}包起来.如果将文字不加处理,直接写到公式里面会出现如下问题:如果…

  • nginx配置跨域访问,无法生效_页面跨域访问

    nginx配置跨域访问,无法生效_页面跨域访问由于浏览器同源策略的存在使得一个源中加载来自其它源中资源的行为受到了限制。即会出现跨域请求禁止。通俗一点说就是如果存在协议、域名、端口或者子域名不同服务端,或一者为IP地址,一者为域名地址(在跨域问题上,域仅仅是通过&quot;url的首部&quot;来识别而不会去尝试判断相同的IP地址对应着两个域或者两个域是否同属同一个IP),之中任意服务端旗下的客户端发起请求其它服务端资源的访问行动都是跨域的,而浏览器为了安全…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号