【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]问题描述有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?为方便讲解和理解,下面讲述的例子均先用具体的数字代入,即:eg:number=4,capacity=8i(物品编号) 1 2 3 4 w(体积) 2 3 4 5 v(价值) 3 4 5 6 总…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

问题描述

有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

为方便讲解和理解,下面讲述的例子均先用具体的数字代入,即:eg:number=4,capacity=8

i(物品编号) 1 2 3 4
w(体积) 2 3 4 5
v(价值) 3 4 5 6

 

总体思路

根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

动态规划的原理

动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

背包问题的解决过程

在解决问题之前,为描述方便,首先定义一些变量:Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积,定义V(i,j):当前背包容量 j,前 i 个物品最佳组合对应的价值,同时背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品选或不选)。

1、建立模型,即求max(V1X1+V2X2+…+VnXn);

2、寻找约束条件,W1X1+W2X2+…+WnXn<capacity;

3、寻找递推关系式,面对当前商品有两种可能性:

  • 包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);
  • 还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}。

其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i),但价值增加了v(i);

由此可以得出递推关系式:

  • j<w(i)      V(i,j)=V(i-1,j)
  • j>=w(i)     V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}

这里需要解释一下,为什么能装的情况下,需要这样求解(这才是本问题的关键所在!):

可以这么理解,如果要到达V(i,j)这一个状态有几种方式?

肯定是两种,第一种是第i件商品没有装进去,第二种是第i件商品装进去了。没有装进去很好理解,就是V(i-1,j);装进去了怎么理解呢?如果装进去第i件商品,那么装入之前是什么状态,肯定是V(i-1,j-w(i))。由于最优性原理(上文讲到),V(i-1,j-w(i))就是前面决策造成的一种状态,后面的决策就要构成最优策略。两种情况进行比较,得出最优。

4、填表,首先初始化边界条件,V(0,j)=V(i,0)=0;

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

然后一行一行的填表:

  • 如,i=1,j=1,w(1)=2,v(1)=3,有j<w(1),故V(1,1)=V(1-1,1)=0;
  • 又如i=1,j=2,w(1)=2,v(1)=3,有j=w(1),故V(1,2)=max{ V(1-1,2),V(1-1,2-w(1))+v(1) }=max{0,0+3}=3;
  • 如此下去,填到最后一个,i=4,j=8,w(4)=5,v(4)=6,有j>w(4),故V(4,8)=max{ V(4-1,8),V(4-1,8-w(4))+v(4) }=max{9,4+6}=10……

所以填完表如下图:

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

5、表格填完,最优解即是V(number,capacity)=V(4,8)=10。

 

代码实现

为了和之前的动态规划图可以进行对比,尽管只有4个商品,但是我们创建的数组元素由5个。

#include<iostream>
using namespace std;
#include <algorithm>

int main()
{
	int w[5] = { 0 , 2 , 3 , 4 , 5 };			//商品的体积2、3、4、5
	int v[5] = { 0 , 3 , 4 , 5 , 6 };			//商品的价值3、4、5、6
	int bagV = 8;					        //背包大小
	int dp[5][9] = { { 0 } };			        //动态规划表

	for (int i = 1; i <= 4; i++) {
		for (int j = 1; j <= bagV; j++) {
			if (j < w[i])
				dp[i][j] = dp[i - 1][j];
			else
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
		}
	}

	//动态规划表的输出
	for (int i = 0; i < 5; i++) {
		for (int j = 0; j < 9; j++) {
			cout << dp[i][j] << ' ';
		}
		cout << endl;
	}

	return 0;
}

 

背包问题最优解回溯

通过上面的方法可以求出背包问题的最优解,但还不知道这个最优解由哪些商品组成,故要根据最优解回溯找出解的组成,根据填表的原理可以有如下的寻解方式:

  • V(i,j)=V(i-1,j)时,说明没有选择第i 个商品,则回到V(i-1,j);
  • V(i,j)=V(i-1,j-w(i))+v(i)时,说明装了第i个商品,该商品是最优解组成的一部分,随后我们得回到装该商品之前,即回到V(i-1,j-w(i));
  • 一直遍历到i=0结束为止,所有解的组成都会找到。

就拿上面的例子来说吧:

  • 最优解为V(4,8)=10,而V(4,8)!=V(3,8)却有V(4,8)=V(3,8-w(4))+v(4)=V(3,3)+6=4+6=10,所以第4件商品被选中,并且回到V(3,8-w(4))=V(3,3);
  • 有V(3,3)=V(2,3)=4,所以第3件商品没被选择,回到V(2,3);
  • 而V(2,3)!=V(1,3)却有V(2,3)=V(1,3-w(2))+v(2)=V(1,0)+4=0+4=4,所以第2件商品被选中,并且回到V(1,3-w(2))=V(1,0);
  • 有V(1,0)=V(0,0)=0,所以第1件商品没被选择。

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

 

代码实现

背包问题最终版详细代码实现如下:

#include<iostream>
using namespace std;
#include <algorithm>

int w[5] = { 0 , 2 , 3 , 4 , 5 };			//商品的体积2、3、4、5
int v[5] = { 0 , 3 , 4 , 5 , 6 };			//商品的价值3、4、5、6
int bagV = 8;					        //背包大小
int dp[5][9] = { { 0 } };			        //动态规划表
int item[5];					        //最优解情况

void findMax() {					//动态规划
	for (int i = 1; i <= 4; i++) {
		for (int j = 1; j <= bagV; j++) {
			if (j < w[i])
				dp[i][j] = dp[i - 1][j];
			else
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
		}
	}
}

void findWhat(int i, int j) {				//最优解情况
	if (i >= 0) {
		if (dp[i][j] == dp[i - 1][j]) {
			item[i] = 0;
			findWhat(i - 1, j);
		}
		else if (j - w[i] >= 0 && dp[i][j] == dp[i - 1][j - w[i]] + v[i]) {
			item[i] = 1;
			findWhat(i - 1, j - w[i]);
		}
	}
}

void print() {
	for (int i = 0; i < 5; i++) {			//动态规划表输出
		for (int j = 0; j < 9; j++) {
			cout << dp[i][j] << ' ';
		}
		cout << endl;
	}
	cout << endl;

	for (int i = 0; i < 5; i++)			//最优解输出
		cout << item[i] << ' ';
	cout << endl;
}

int main()
{
	findMax();
	findWhat(4, 8);
	print();

	return 0;
}

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/164393.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 花了一个周末折腾蜗牛星际的黑群晖,多图预警!

    花了一个周末折腾蜗牛星际的黑群晖,多图预警!简介不知道什么是蜗牛星际的,可以自行百度下,顺便在引用一下矿难的前因后果:最近大量蜗牛星际二手主机在咸鱼售卖,是什么原因?总之我花了349块买了台D款的蜗牛星际J1900(有ABCD款,D款最新,也贵),买来是老板没有帮我装好黑群晖,只能自己来了。强烈建议不爱折腾或者动手能力差的,买装好系统的。不过吧,折腾起来也挺好玩的,以后系统出问题了也能自己修复。接下来我要介绍一下我安装黑群晖的过…

  • arraylist和linkedlist的区别_arraylist 和linkedlist

    arraylist和linkedlist的区别_arraylist 和linkedlist&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;这段时间把疯狂JAVA再看了一遍,发现Stack,ArrayDeque,LinkedList都可以作为栈使用,所以就稍微从性能以及实现的细节对比这三者的区别。类继承树&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;由继承树看出,三者都是Collection的间接实现类。&

  • 使用NPOI导出Excel文件

    使用NPOI导出Excel文件使用NPOI导出Excel文件,本实例使用了ASP.NETMVC。1、使用NPOI导出Excel文件实例:导出商品列表。要求:1、通过NPOI导出导出商品列表信息;2、使用Excel函数计算商品总金额;在Controllers控制器目录中创建ExportController.cs控制器usingSystem.IO;usingNPOI;usingNPOI.POI…

  • 人工智能 – 五子棋人机对战

    人工智能 – 五子棋人机对战人工智能 – 五子棋人机对战作者:jig    阅读人次:6635    文章来源:本站原创    发布时间:2007-7-12    网友评论(8)条 
    原帖及讨论:http://bbs.bccn.net/thread-154777-1-1.html
    */————————————————————————————–
    */出自:编程中国  http://www.

  • JAVA 中级面试题 (附答案)

    JAVA 中级面试题 (附答案)问题大多取自点击打开链接 在网上找了一些答案,也添加了一些几乎是必问的题一、    基础知识:1)   HashMap,LinkedHashMap,TreeMap的区别1.        HashMap,LinkedHashMap,TreeMap都属于Map。2.        Map的主要作用是用于存储键(key)值(value)对,根据键得到值,因此不允许键重复,但允许值重复…

  • java tp_tp90和tp99指标

    java tp_tp90和tp99指标TP指标:TP50:指在一个时间段内(如5分钟),统计该方法每次调用所消耗的时间,并将这些时间按从小到大的顺序进行排序,取第50%的那个值作为TP50值;配置此监控指标对应的报警阀值后,需要保证在这个时间段内该方法所有调用的消耗时间至少有50%的值要小于此阀值,否则系统将会报警。TP90,TP99,TP999与TP50值计算方式一致,它们分别代表着对方法的不同性能要求,TP50相对较低,TP9…

    2022年10月29日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号