dts展开为platform_device结构过程分析

dts展开为platform_device结构过程分析dts节点展开为platform_device结构过程分析1.概述本文主要是记录学习Linux解析dts的代码分析,以便进行后续回顾。平台:ARMVexpress内核版本:linux-4.92.dts节点展开为platform_device结构过程分析自从ARM引入的dts之后,bsp驱动代码产生了非常之大的变化,像在linux-2.6.32这些版本的platform驱动中,会存在大…

大家好,又见面了,我是你们的朋友全栈君。

dts节点展开为platform_device结构过程分析

1.概述

本文主要是记录学习Linux解析dts的代码分析,以便进行后续回顾。

平台:ARM Vexpress

内核版本:linux-4.9

2.dts节点展开为platform_device结构过程分析

自从ARM引入的dts之后,bsp驱动代码产生了非常之大的变化,像在linux-2.6.32这些版本的platform驱动中,会存在大量类似一下的代码:

	static struct resource xxx_resources[] = { 
   
	        [0] = { 
   
	                .start  =,
	                .end    =,
	                .flags  = IORESOURCE_MEM,
	        },
	        [1] = { 
   
	                .start  =,
	                .end    =,
	                .flags  = IORESOURCE_IRQ,
	         },
	 };

	 static struct platform_device xxx_device = { 
   
	         .name           = "xxx",
	         .id             = -1,
	         .dev            = { 
   
	                                 .platform_data          = &xxx_data,
	         },
	         .resource       = xxx_resources,
	         .num_resources  = ARRAY_SIZE(xxx_resources),
	};

但是通过dts,像上述的代码不再需要我们程序员进行手动配置,只需在dts相应的节点通过reg、interrupt等属性的配置,就可以通过内核提供的解析dts的接口把dts中的节点信息展开为platform_device,然后把reg、interrupt等属性的信息填充到struct resource资源结构体中,有效的减少了我们驱动代码的冗余,做到配置简单,易读。以下就是通过分析代码,了解linux是如何把dts节点信息展开为struct platform_device结构体的过程。

将dts节点展开为struct platform_device结构体的过程主要是交给of_platform_populate()函数完成,通过对该函数使用dump_stack()回溯其调用过程可以得到以下log:

	futex hash table entries: 1024 (order: 4, 65536 bytes)
NET: Registered protocol family 16
DMA: preallocated 256 KiB pool for atomic coherent allocations
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.9.56+ #7
Hardware name: ARM-Versatile Express
[<80111158>] (unwind_backtrace) from [<8010ca80>] (show_stack+0x20/0x24)
[<8010ca80>] (show_stack) from [<803dd1b4>] (dump_stack+0xac/0xd8)
[<803dd1b4>] (dump_stack) from [<80586318>] (of_platform_populate+0x30/0xbc)
[<80586318>] (of_platform_populate) from [<80928410>] (vexpress_config_init+0xb8/0xec)
[<80928410>] (vexpress_config_init) from [<80101c9c>] (do_one_initcall+0x54/0x184)
[<80101c9c>] (do_one_initcall) from [<80900f48>] (kernel_init_freeable+0x214/0x2a8)
[<80900f48>] (kernel_init_freeable) from [<806a4a94>] (kernel_init+0x18/0x124)
[<806a4a94>] (kernel_init) from [<80108190>] (ret_from_fork+0x14/0x24)
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.9.56+ #7
Hardware name: ARM-Versatile Express
[<80111158>] (unwind_backtrace) from [<8010ca80>] (show_stack+0x20/0x24)
[<8010ca80>] (show_stack) from [<803dd1b4>] (dump_stack+0xac/0xd8)
[<803dd1b4>] (dump_stack) from [<80586318>] (of_platform_populate+0x30/0xbc)
[<80586318>] (of_platform_populate) from [<80928410>] (vexpress_config_init+0xb8/0xec)
[<80928410>] (vexpress_config_init) from [<80101c9c>] (do_one_initcall+0x54/0x184)
[<80101c9c>] (do_one_initcall) from [<80900f48>] (kernel_init_freeable+0x214/0x2a8)
[<80900f48>] (kernel_init_freeable) from [<806a4a94>] (kernel_init+0x18/0x124)
[<806a4a94>] (kernel_init) from [<80108190>] (ret_from_fork+0x14/0x24)
cpuidle: using governor ladder

通过栈回溯信息,我们可以知道of_platform_populate()函数的最早调用入口是vexpress_config_init()函数,除此之外,在of_platform_default_populate()函数中也会调用该函数,分别如下所示

vexpress_config_init()函数是定义在drivers/bus/vexpress-config.c文件中,该函数实现如下:

	static int __init vexpress_config_init(void)
{ 

int err = 0;
struct device_node *node;
/* Need the config devices early, before the "normal" devices... */
for_each_compatible_node(node, NULL, "arm,vexpress,config-bus") { 

err = vexpress_config_populate(node);
if (err) { 

of_node_put(node);
break;
}
}
return err;
}
postcore_initcall(vexpress_config_init);
//另外一个函数入口
int of_platform_default_populate(struct device_node *root,
const struct of_dev_auxdata *lookup,
struct device *parent)
{ 

return of_platform_populate(root, of_default_bus_match_table, lookup,
parent);
}
EXPORT_SYMBOL_GPL(of_platform_default_populate);
#ifndef CONFIG_PPC
static int __init of_platform_default_populate_init(void)
{ 

struct device_node *node;
if (!of_have_populated_dt())
return -ENODEV;
/* * Handle ramoops explicitly, since it is inside /reserved-memory, * which lacks a "compatible" property. */
node = of_find_node_by_path("/reserved-memory");
if (node) { 

node = of_find_compatible_node(node, NULL, "ramoops");
if (node)
of_platform_device_create(node, NULL, NULL);
}
/* Populate everything else. */
of_platform_default_populate(NULL, NULL, NULL);
return 0;
}
arch_initcall_sync(of_platform_default_populate_init);
#endif

首先,通过postcore_initcall和arch_initcall_sync这些宏声明该platform driver的调用等级,当内核执行到以下调用时,会调用到该函数:

	start_kernel(void)
->rest_init()
->kernel_init()
->kernel_init_freeable()
->do_basic_setup()
->do_initcalls()
->do_initcall_level()
->do_one_initcall()

在do_initcalls()函数中,会从0遍历到ARRAY_SIZE(initcall_levels) – 1,代码如下:

	static void __init do_initcalls(void)
{ 

int level;
for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++)
do_initcall_level(level);
}

其中initcall_levels是一个指针数组,里面存放着各个level下的函数指针的首地址,该数组定义在init/main.c中,如下所示:

	static initcall_t *initcall_levels[] __initdata = { 

__initcall0_start,
__initcall1_start,
__initcall2_start,
__initcall3_start,
__initcall4_start,
__initcall5_start,
__initcall6_start,
__initcall7_start,
__initcall_end,
};

因此在do_initcalls()函数中,会从level=0遍历到level=8,每个driver的调用顺序可以通过以下宏来声明:

	#define pure_initcall(fn) __define_initcall(fn, 0)
#define core_initcall(fn) __define_initcall(fn, 1)
#define core_initcall_sync(fn) __define_initcall(fn, 1s)
#define postcore_initcall(fn) __define_initcall(fn, 2)
#define postcore_initcall_sync(fn) __define_initcall(fn, 2s)
#define arch_initcall(fn) __define_initcall(fn, 3)
#define arch_initcall_sync(fn) __define_initcall(fn, 3s)
#define subsys_initcall(fn) __define_initcall(fn, 4)
#define subsys_initcall_sync(fn) __define_initcall(fn, 4s)
#define fs_initcall(fn) __define_initcall(fn, 5)
#define fs_initcall_sync(fn) __define_initcall(fn, 5s)
#define rootfs_initcall(fn) __define_initcall(fn, rootfs)
#define device_initcall(fn) __define_initcall(fn, 6)
#define device_initcall_sync(fn) __define_initcall(fn, 6s)
#define late_initcall(fn) __define_initcall(fn, 7)
#define late_initcall_sync(fn) __define_initcall(fn, 7s)
#define __initcall(fn) device_initcall(fn)

以上这些宏都定义在include/linux/init.h文件中。从这里可以看出postcore_initcall宏声明的driver初始化函数的调用level为2。

了解到如何调用到of_platform_default_populate()函数的过程,我们再来看看of_platform_populate()函数如何把一个dts节点展开struct platform_device结构的,分析如下:

/** * of_platform_populate() - Populate platform_devices from device tree data * @root: parent of the first level to probe or NULL for the root of the tree * @matches: match table, NULL to use the default * @lookup: auxdata table for matching id and platform_data with device nodes * @parent: parent to hook devices from, NULL for toplevel * * Similar to of_platform_bus_probe(), this function walks the device tree * and creates devices from nodes. It differs in that it follows the modern * convention of requiring all device nodes to have a 'compatible' property, * and it is suitable for creating devices which are children of the root * node (of_platform_bus_probe will only create children of the root which * are selected by the @matches argument). * * New board support should be using this function instead of * of_platform_bus_probe(). * * Returns 0 on success, < 0 on failure. */
int of_platform_populate(struct device_node *root,
const struct of_device_id *matches,
const struct of_dev_auxdata *lookup,
struct device *parent)
{ 

struct device_node *child;
int rc = 0;
root = root ? of_node_get(root) : of_find_node_by_path("/");
if (!root)
return -EINVAL;
pr_debug("%s()\n", __func__);
pr_debug(" starting at: %s\n", root->full_name);
for_each_child_of_node(root, child) { 

/* 1.遍历root节点下的所有子节点,调用of_platform_bus_create() */
rc = of_platform_bus_create(child, matches, lookup, parent, true);
if (rc) { 

of_node_put(child);
break;
}
}
of_node_set_flag(root, OF_POPULATED_BUS);
of_node_put(root);
return rc;
}
EXPORT_SYMBOL_GPL(of_platform_populate);

通常root节点都是一些特定的总线节点,如platform device的simple-bus,如下所示:

const struct of_device_id of_default_bus_match_table[] = { 

{ 
 .compatible = "simple-bus", },
{ 
 .compatible = "simple-mfd", },
{ 
 .compatible = "isa", },
#ifdef CONFIG_ARM_AMBA
{ 
 .compatible = "arm,amba-bus", },
#endif /* CONFIG_ARM_AMBA */
{ 
} /* Empty terminated list */
};

dts对应节点如下:

smb@04000000 { 

compatible = "simple-bus";
#address-cells = <2>;
#size-cells = <1>;
ranges = <0 0 0x40000000 0x04000000>,
<1 0 0x44000000 0x04000000>,
<2 0 0x48000000 0x04000000>,
<3 0 0x4c000000 0x04000000>,
<7 0 0x10000000 0x00020000>;
...
}

还有arm vexpress的config-bus,dts节点如下:

dcc { 

compatible = "arm,vexpress,config-bus";
arm,vexpress,config-bridge = <&v2m_sysreg>;
oscclk0: extsaxiclk { 

/* ACLK clock to the AXI master port on the test chip */
compatible = "arm,vexpress-osc";
arm,vexpress-sysreg,func = <1 0>;
freq-range = <30000000 50000000>;
#clock-cells = <0>;
clock-output-names = "extsaxiclk";
};
...
}

在of_platform_bus_create()函数中,会根据节点的compatible属性进行相应的设备创建,代码分析如下:

/** * of_platform_bus_create() - Create a device for a node and its children. * @bus: device node of the bus to instantiate * @matches: match table for bus nodes * @lookup: auxdata table for matching id and platform_data with device nodes * @parent: parent for new device, or NULL for top level. * @strict: require compatible property * * Creates a platform_device for the provided device_node, and optionally * recursively create devices for all the child nodes. */
static int of_platform_bus_create(struct device_node *bus,
const struct of_device_id *matches,
const struct of_dev_auxdata *lookup,
struct device *parent, bool strict)
{ 

const struct of_dev_auxdata *auxdata;
struct device_node *child;
struct platform_device *dev;
const char *bus_id = NULL;
void *platform_data = NULL;
int rc = 0;
/* 1.检查节点是否具备compatible属性,没有,则返回0 */
if (strict && (!of_get_property(bus, "compatible", NULL))) { 

pr_debug("%s() - skipping %s, no compatible prop\n",
__func__, bus->full_name);
return 0;
}
/* 2.检查节点是否已经解析过,是,则返回0 */
if (of_node_check_flag(bus, OF_POPULATED_BUS)) { 

pr_debug("%s() - skipping %s, already populated\n",
__func__, bus->full_name);
return 0;
}
auxdata = of_dev_lookup(lookup, bus);
if (auxdata) { 

bus_id = auxdata->name;
platform_data = auxdata->platform_data;
}
/* 3.判断是否是amba device,如果是,则创建该类型设备 */
if (of_device_is_compatible(bus, "arm,primecell")) { 

/* * Don't return an error here to keep compatibility with older * device tree files. */
of_amba_device_create(bus, bus_id, platform_data, parent);
return 0;
}
/* 4.创建platform device */
dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent);
if (!dev || !of_match_node(matches, bus))
return 0;
/* 5.如果该节点为总线节点,则遍历该节点下的所有子节点,并创建相应的设备 */
for_each_child_of_node(bus, child) { 

pr_debug(" create child: %s\n", child->full_name);
rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict);
if (rc) { 

of_node_put(child);
break;
}
}
of_node_set_flag(bus, OF_POPULATED_BUS);
return rc;
}

创建设备的函数of_platform_device_create_pdata()分析如下:

/** * of_platform_device_create_pdata - Alloc, initialize and register an of_device * @np: pointer to node to create device for * @bus_id: name to assign device * @platform_data: pointer to populate platform_data pointer with * @parent: Linux device model parent device. * * Returns pointer to created platform device, or NULL if a device was not * registered. Unavailable devices will not get registered. */
static struct platform_device *of_platform_device_create_pdata(
struct device_node *np,
const char *bus_id,
void *platform_data,
struct device *parent)
{ 

struct platform_device *dev;
/* 1.检查节点status属性值是否为ok或okay,不等,则返回false, * 2.status属性不存在,返回true */
if (!of_device_is_available(np) ||
of_node_test_and_set_flag(np, OF_POPULATED))
return NULL;
/* 2.分配struct platform_device结构体 * 3.解析dts mem/irq等资源信息,填充到设备结构中 */
dev = of_device_alloc(np, bus_id, parent);
if (!dev)
goto err_clear_flag;
/* 4.初始化设备bus类型,用于驱动probe */
dev->dev.bus = &platform_bus_type;
dev->dev.platform_data = platform_data;
of_dma_configure(&dev->dev, dev->dev.of_node);
of_msi_configure(&dev->dev, dev->dev.of_node);
/* 5.添加到设备链表,至此,设备创建完成 */
if (of_device_add(dev) != 0) { 

of_dma_deconfigure(&dev->dev);
platform_device_put(dev);
goto err_clear_flag;
}
return dev;
err_clear_flag:
of_node_clear_flag(np, OF_POPULATED);
return NULL;
}

至此,设备创建完成,可以等待驱动的probe

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/163821.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 软链接和硬链接到底有啥作用和区别呢_玉溪硬盒和软盒的区别

    软链接和硬链接到底有啥作用和区别呢_玉溪硬盒和软盒的区别前言:在网上搜索了好久,看了很多博客,某度知道等等。关于软硬链接的解释都太模糊,还有什么i节点,跨分区根本弄不明白,在查阅了书籍和询问老师后决定自己写一篇简单的博文,然初学者都能够明白的博文。一建立软链接和硬链接的语法软链接:ln-s源文件目标文件硬链接:ln源文件目标文件源文件:即你要对谁建立链接二什么是软链接和硬链接1,软链接可以理解成快捷方式。它和wind

  • Android APK反编译具体解释(附图)

    Android APK反编译具体解释(附图)

  • LARS(最小角回归)

    LARS(最小角回归)优缺点LARS是一个适用于高维数据的回归算法。优点: 特别适合于特征维度n远高于样本数m的情况。 算法的最坏计算复杂度和最小二乘法类似,但是其计算速度几乎和前向选择算法一样 可以产生分段线性结果的完整路径,这在模型的交叉验证中极为有用 缺点:由于LARS的迭代方向是根据目标的残差而定,所以该算法对样本的噪声极为敏感。…

  • executorservice等待线程池执行完毕_java线程池策略

    executorservice等待线程池执行完毕_java线程池策略packagecom.aop8.testJava;importjava.util.ArrayList;importjava.util.List;importjava.util.concurrent.Callable;importjava.util.concurrent.ExecutionException;importjava.util.concurrent.Executo…

  • AWS S3 学习小结

    AWS S3 学习小结1.首先,这个是AWS的开发资源使用文档:AWS开发文档,AWS官网-S3教程​​​​​​​2.我们可以通过AWSCli和JavaApi来操作AWS的S3,AWSCli安装教程:AWSCli安装3.Linux下连接S3前,需要先获取到AWS的IAM的accessKey和secretKey,那么获取方式是:服务->安全、身份与合规分组下的IAM->用户…

    2022年10月19日
  • 中文金融领域情感词典构建「建议收藏」

    中文金融领域情感词典构建「建议收藏」2019年10月4日-6日Python爬虫与文本分析工作坊&课题申报高级研修班这篇文章是公众号关注者郝童鞋今早发给我的,在此谢谢郝童鞋。文章基于简单算法和人工…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号