Python操作CSV格式文件

Python操作CSV格式文件(一)CSV格式文件1.说明CSV是一种以逗号分隔数值的文件类型,在数据库或电子表格中,常见的导入导出文件格式就是CSV格式,CSV格式存储数据通常以纯文本的方式存数数据表。(二)CSV库操作csv格式文本操作一下表格数据:1.读取表头的2中方式#方式一importcsvwithopen(“D:\\test.csv”)asf:read

大家好,又见面了,我是你们的朋友全栈君。

(一)CSV格式文件

1.说明

CSV是一种以逗号分隔数值的文件类型,在数据库或电子表格中,常见的导入导出文件格式就是CSV格式,CSV格式存储数据通常以纯文本的方式存数数据表。

(二)CSV库操作csv格式文本

操作一下表格数据:
这里写图片描述

1.读取表头的2中方式

#方式一
import csv
with open("D:\\test.csv") as f:
    reader = csv.reader(f)
    rows=[row for row in  reader]
    print(rows[0])


----------
#方式二
import csv
with open("D:\\test.csv") as f:
    #1.创建阅读器对象
    reader = csv.reader(f)
    #2.读取文件第一行数据
    head_row=next(reader)
    print(head_row)

结果演示:['姓名', '年龄', '职业', '家庭地址', '工资']

2.读取文件某一列数据

#1.获取文件某一列数据
import csv
with open("D:\\test.csv") as f:
    reader = csv.reader(f)
    column=[row[0] for row in  reader]
    print(column)

结果演示:['姓名', '张三', '李四', '王五', 'Kaina']

3.向csv文件中写入数据

#1.向csv文件中写入数据
import csv
with open("D:\\test.csv",'a') as f:
     row=['曹操','23','学生','黑龙江','5000']
     write=csv.writer(f)
     write.writerow(row)
     print("写入完毕!")

结果演示:
这里写图片描述


4.获取文件头及其索引

import csv
with open("D:\\test.csv") as f:
    #1.创建阅读器对象
    reader = csv.reader(f)
    #2.读取文件第一行数据
    head_row=next(reader)
    print(head_row)
    #4.获取文件头及其索引
    for index,column_header in enumerate(head_row):
        print(index,column_header)
结果演示:
['姓名', '年龄', '职业', '家庭地址', '工资']
0 姓名
1 年龄
2 职业
3 家庭地址
4 工资

5.获取某列的最大值

# ['姓名', '年龄', '职业', '家庭地址', '工资']
import csv
with open("D:\\test.csv") as f:
    reader = csv.reader(f)
    header_row=next(reader)
    # print(header_row)
    salary=[]
    for row in reader:
        #把第五列数据保存到列表salary中
         salary.append(int(row[4]))
    print(salary)
    print("员工最高工资为:"+str(max(salary)))

结果演示:员工最高工资为:10000

6.复制CSV格式文件

原文件test.csv
这里写图片描述


import csv
f=open('test.csv')
#1.newline=''消除空格行
aim_file=open('Aim.csv','w',newline='')
write=csv.writer(aim_file)
reader=csv.reader(f)
rows=[row for row in reader]
#2.遍历rows列表
for row in rows:
    #3.把每一行写到Aim.csv中
    write.writerow(row)

01.未添加关键字参数newline=’ ‘的结果:
这里写图片描述


02添加关键字参数newline=’ ‘的Aim.csv文件的内容:
这里写图片描述


(三)pandas库操作CSV文件

csv文件内容:
这里写图片描述

1.安装pandas库:pip install pandas

2.读取csv文件所有数据

 import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    print(data)

结果演示:
      姓名  年龄   职业  家庭地址     工资
0     张三  22   厨师   北京市   6000
1     李四  26  摄影师  湖南长沙   8000
2     王五  28  程序员    深圳  10000
3  Kaina  22   学生   黑龙江   2000
4     曹操  28   销售    上海   6000

3.describe()方法数据统计

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #了解更多describe()知识,ctr+鼠标左键
    print(data.describe())

结果演示:
             年龄            工资
count   5.00000      5.000000
mean   25.20000   6400.000000
std     3.03315   2966.479395
min    22.00000   2000.000000
25%    22.00000   6000.000000
50%    26.00000   6000.000000
75%    28.00000   8000.000000
max    28.00000  10000.000000

4.读取文件前几行数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取前2行数据
    # head_datas = data.head(0)
    head_datas=data.head(2)
    print(head_datas)


结果演示:
   姓名  年龄   职业  家庭地址    工资
0  张三  22   厨师   北京市  6000
1  李四  26  摄影师  湖南长沙  8000

5.读取某一行所有数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取第一行所有数据
    print(data.ix[0,])


结果演示:
姓名        张三
年龄        22
职业        厨师
家庭地址     北京市
工资      6000

6.读取某几行的数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取第一行、第二行、第四行的所有数据
    print(data.ix[[0,1,3],:])


结果演示:
      姓名  年龄   职业  家庭地址    工资
0     张三  22   厨师   北京市  6000
1     李四  26  摄影师  湖南长沙  8000
3  Kaina  22   学生   黑龙江  2000

7.读取所有行和列数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取所有行和列数据
    print(data.ix[:,:])

结果演示:
      姓名  年龄   职业  家庭地址     工资
0     张三  22   厨师   北京市   6000
1     李四  26  摄影师  湖南长沙   8000
2     王五  28  程序员    深圳  10000
3  Kaina  22   学生   黑龙江   2000
4     曹操  28   销售    上海   6000

8.读取某一列的所有行数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    # print(data.ix[:, 4])
    print(data.ix[:,'工资'])
结果演示:
0     6000
1     8000
2    10000
3     2000
4     6000
Name: 工资, dtype: int64

9.读取某几列的某几行

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    print(data.ix[[0,1,3],['姓名','职业','工资']])
结果演示:
      姓名   职业    工资
0     张三   厨师  6000
1     李四  摄影师  8000
3  Kaina   学生  2000

10.读取某一行和某一列对应的数据

import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
    data=pd.read_csv(file)
    #读取第三行的第三列
    print("职业---"+data.ix[2,2])

结果演示:职业---程序员

11.CSV数据的导入导出(复制CSV文件)

读方式01:

import pandas as pd
#1.读入数据
data=pd.read_csv(file)

写出数据02:

import pandas as pd
#1.写出数据,目标文件是Aim.csv
data.to_csv('Aim.csv')

其他:

01.读取网络数据:
import pandas as pd 
data_url = "https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv"
#填写url读取
df = pd.read_csv(data_url)


----------
02.读取excel文件数据
import pandas as pd 
data = pd.read_excel(filepath)

实例演示:

1.test.csv原文件内容
这里写图片描述


2.现在把test.csv中的内容复制到Aim.csv中

import pandas as pd
file=open('test.csv')
#1.读取file中的数据
data=pd.read_csv(file)
#2.把data写到目标文件Aim.csv中
data.to_csv('Aim.csv')
print(data)

结果演示:
这里写图片描述


注:pandas模块处理Excel文件和处理CSV文件差不多!

参考文档:https://docs.python.org/3.6/library/csv.html

学习视频:https://www.365yg.com/a6449129169518330382

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/162459.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • git 教程

    git 教程

    2021年10月20日
  • makefile 编译参数_gcc使用说明

    makefile 编译参数_gcc使用说明gcc编译源文件共有4个过程,预处理、编译、汇编、链接。预处理:命令:gcc-Etest.c-otest.i(-o后面指定生成文件的命名)过程:展开宏定义(#define),处理编译条件指令(#if#ifndef等),插入引用的头文件(#include),删除注释,添加行号和文件标识。结果:生成.i文件,一般的文本编辑器都能打开编译:命令:gcc-Ste…

    2022年10月13日
  • Java NIO?看这一篇就够了![通俗易懂]

    Java NIO?看这一篇就够了![通俗易懂]点击上方“方志朋”,选择“置顶或者星标”你的关注意义重大!✎前言现在使用NIO的场景越来越多,很多网上的技术框架或多或少的使用NIO技术,譬如Tomcat,Jetty。学习和掌握NIO技术已经不是一个JAVA攻城狮的加分技能,而是一个必备技能。在前面2篇文章《什么是Zero-Copy?》和《NIO相关基础篇》中我们学习了NIO的相关理论知识,而在本篇中我们一起来学习一下Ja…

  • RPC接口实现_一个接口多个实现

    RPC接口实现_一个接口多个实现1.RPC作用以目前的认识,RPC的作用:多个工程之间数据传输。2.逐步完成RPC接口实现第一步:编写thrift文件,语法格式和java不同。在布局分层里安排在了client层

    2022年10月13日
  • 表单样式模板_商品表格模板

    表单样式模板_商品表格模板特殊项:用户中心左侧导航:frontend.base.php(增删导航可以在这里改  DW中大约561-760行)apply.index.html                                  申请开店页article.index.html                                 文章分类列表页(包括商城公告、商城公告及其他自建分

  • 为什么很少_OpenGL合并drawcall

    为什么很少_OpenGL合并drawcallhttps://www.zhihu.com/question/27933010

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号