大家好,又见面了,我是你们的朋友全栈君。
(一)CSV格式文件
1.说明
CSV是一种以逗号分隔数值的文件类型,在数据库或电子表格中,常见的导入导出文件格式就是CSV格式,CSV格式存储数据通常以纯文本的方式存数数据表。
(二)CSV库操作csv格式文本
操作一下表格数据:
1.读取表头的2中方式
#方式一
import csv
with open("D:\\test.csv") as f:
reader = csv.reader(f)
rows=[row for row in reader]
print(rows[0])
----------
#方式二
import csv
with open("D:\\test.csv") as f:
#1.创建阅读器对象
reader = csv.reader(f)
#2.读取文件第一行数据
head_row=next(reader)
print(head_row)
结果演示:['姓名', '年龄', '职业', '家庭地址', '工资']
2.读取文件某一列数据
#1.获取文件某一列数据
import csv
with open("D:\\test.csv") as f:
reader = csv.reader(f)
column=[row[0] for row in reader]
print(column)
结果演示:['姓名', '张三', '李四', '王五', 'Kaina']
3.向csv文件中写入数据
#1.向csv文件中写入数据
import csv
with open("D:\\test.csv",'a') as f:
row=['曹操','23','学生','黑龙江','5000']
write=csv.writer(f)
write.writerow(row)
print("写入完毕!")
结果演示:
4.获取文件头及其索引
import csv
with open("D:\\test.csv") as f:
#1.创建阅读器对象
reader = csv.reader(f)
#2.读取文件第一行数据
head_row=next(reader)
print(head_row)
#4.获取文件头及其索引
for index,column_header in enumerate(head_row):
print(index,column_header)
结果演示:
['姓名', '年龄', '职业', '家庭地址', '工资']
0 姓名
1 年龄
2 职业
3 家庭地址
4 工资
5.获取某列的最大值
# ['姓名', '年龄', '职业', '家庭地址', '工资']
import csv
with open("D:\\test.csv") as f:
reader = csv.reader(f)
header_row=next(reader)
# print(header_row)
salary=[]
for row in reader:
#把第五列数据保存到列表salary中
salary.append(int(row[4]))
print(salary)
print("员工最高工资为:"+str(max(salary)))
结果演示:员工最高工资为:10000
6.复制CSV格式文件
原文件test.csv
import csv
f=open('test.csv')
#1.newline=''消除空格行
aim_file=open('Aim.csv','w',newline='')
write=csv.writer(aim_file)
reader=csv.reader(f)
rows=[row for row in reader]
#2.遍历rows列表
for row in rows:
#3.把每一行写到Aim.csv中
write.writerow(row)
01.未添加关键字参数newline=’ ‘的结果:
02添加关键字参数newline=’ ‘的Aim.csv文件的内容:
(三)pandas库操作CSV文件
csv文件内容:
1.安装pandas库:pip install pandas
2.读取csv文件所有数据
import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
data=pd.read_csv(file)
print(data)
结果演示:
姓名 年龄 职业 家庭地址 工资
0 张三 22 厨师 北京市 6000
1 李四 26 摄影师 湖南长沙 8000
2 王五 28 程序员 深圳 10000
3 Kaina 22 学生 黑龙江 2000
4 曹操 28 销售 上海 6000
3.describe()方法数据统计
import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
data=pd.read_csv(file)
#了解更多describe()知识,ctr+鼠标左键
print(data.describe())
结果演示:
年龄 工资
count 5.00000 5.000000
mean 25.20000 6400.000000
std 3.03315 2966.479395
min 22.00000 2000.000000
25% 22.00000 6000.000000
50% 26.00000 6000.000000
75% 28.00000 8000.000000
max 28.00000 10000.000000
4.读取文件前几行数据
import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
data=pd.read_csv(file)
#读取前2行数据
# head_datas = data.head(0)
head_datas=data.head(2)
print(head_datas)
结果演示:
姓名 年龄 职业 家庭地址 工资
0 张三 22 厨师 北京市 6000
1 李四 26 摄影师 湖南长沙 8000
5.读取某一行所有数据
import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
data=pd.read_csv(file)
#读取第一行所有数据
print(data.ix[0,])
结果演示:
姓名 张三
年龄 22
职业 厨师
家庭地址 北京市
工资 6000
6.读取某几行的数据
import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
data=pd.read_csv(file)
#读取第一行、第二行、第四行的所有数据
print(data.ix[[0,1,3],:])
结果演示:
姓名 年龄 职业 家庭地址 工资
0 张三 22 厨师 北京市 6000
1 李四 26 摄影师 湖南长沙 8000
3 Kaina 22 学生 黑龙江 2000
7.读取所有行和列数据
import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
data=pd.read_csv(file)
#读取所有行和列数据
print(data.ix[:,:])
结果演示:
姓名 年龄 职业 家庭地址 工资
0 张三 22 厨师 北京市 6000
1 李四 26 摄影师 湖南长沙 8000
2 王五 28 程序员 深圳 10000
3 Kaina 22 学生 黑龙江 2000
4 曹操 28 销售 上海 6000
8.读取某一列的所有行数据
import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
data=pd.read_csv(file)
# print(data.ix[:, 4])
print(data.ix[:,'工资'])
结果演示:
0 6000
1 8000
2 10000
3 2000
4 6000
Name: 工资, dtype: int64
9.读取某几列的某几行
import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
data=pd.read_csv(file)
print(data.ix[[0,1,3],['姓名','职业','工资']])
结果演示:
姓名 职业 工资
0 张三 厨师 6000
1 李四 摄影师 8000
3 Kaina 学生 2000
10.读取某一行和某一列对应的数据
import pandas as pd
path= 'D:\\test.csv'
with open(path)as file:
data=pd.read_csv(file)
#读取第三行的第三列
print("职业---"+data.ix[2,2])
结果演示:职业---程序员
11.CSV数据的导入导出(复制CSV文件)
读方式01:
import pandas as pd
#1.读入数据
data=pd.read_csv(file)
写出数据02:
import pandas as pd
#1.写出数据,目标文件是Aim.csv
data.to_csv('Aim.csv')
其他:
01.读取网络数据:
import pandas as pd
data_url = "https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv"
#填写url读取
df = pd.read_csv(data_url)
----------
02.读取excel文件数据
import pandas as pd
data = pd.read_excel(filepath)
实例演示:
1.test.csv原文件内容
2.现在把test.csv中的内容复制到Aim.csv中
import pandas as pd
file=open('test.csv')
#1.读取file中的数据
data=pd.read_csv(file)
#2.把data写到目标文件Aim.csv中
data.to_csv('Aim.csv')
print(data)
结果演示:
注:pandas模块处理Excel文件和处理CSV文件差不多!
参考文档:https://docs.python.org/3.6/library/csv.html
学习视频:https://www.365yg.com/a6449129169518330382
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/162459.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...