Parallel.Foreach的全部知识要点【转】[通俗易懂]

Parallel.Foreach的全部知识要点【转】[通俗易懂]简介当需要为多核机器进行优化的时候,最好先检查下你的程序是否有处理能够分割开来进行并行处理。(例如,有一个巨大的数据集合,其中的元素需要一个一个进行彼此独立的耗时计算)。.netframework4中提供了Parallel.ForEach和PLINQ来帮助我们进行并行处理,本文探讨这两者的差别及适用的场景。Parallel.ForEachParallel.F…

大家好,又见面了,我是你们的朋友全栈君。

简介

当需要为多核机器进行优化的时候,最好先检查下你的程序是否有处理能够分割开来进行并行处理。(例如,有一个巨大的数据集合,其中的元素需要一个一个进行彼此独立的耗时计算)。

.net framework 4 中提供了 Parallel.ForEach 和 PLINQ 来帮助我们进行并行处理,本文探讨这两者的差别及适用的场景。

Parallel.ForEach

Parallel.ForEach 是 foreach 的多线程实现,他们都能对 IEnumerable<T> 类型对象进行遍历,Parallel.ForEach 的特殊之处在于它使用多线程来执行循环体内的代码段。

Parallel.ForEach 最常用的形式如下:

public static ParallelLoopResult ForEach<TSource>(
    IEnumerable<TSource> source, Action<TSource> body)

PLINQ

PLINQ 也是一种对数据进行并行处理的编程模型,它通过 LINQ 的语法来实现类似 Parallel.ForEach 的多线程并行处理。

场景一:简单数据 之 独立操作的并行处理(使用 Parallel.ForEach)

示例代码:

public static void IndependentAction(IEnumerable<T> source, Action<T> action) { Parallel.ForEach(source, element => action(element)); }

理由:

1. 虽然 PLINQ 也提供了一个类似的 ForAll 接口,但它对于简单的独立操作太重量化了。

2. 使用 Parallel.ForEach 你还能够设定 ParallelOptions.MaxDegreeOfParalelism 参数(指定最多需要多少个线程),这样当 ThreadPool 资源匮乏(甚至当可用线程数<MaxDegreeOfParalelism)的时候, Parallel.ForEach 依然能够顺利运行,并且当后续有更多可用线程出现时,Parallel.ForEach 也能及时地利用这些线程。PLINQ 只能通过WithDegreeOfParallelism 方法来要求固定的线程数,即:要求了几个就是几个,不会多也不会少。

场景二:顺序数据 之 并行处理(使用 PLINQ 来维持数据顺序)

当输出的数据序列需要保持原始的顺序时采用 PLINQ 的 AsOrdered 方法非常简单高效。

示例代码:

public static void GrayscaleTransformation(IEnumerable<Frame> Movie) { var ProcessedMovie = Movie .AsParallel() .AsOrdered() .Select(frame => ConvertToGrayscale(frame)); foreach (var grayscaleFrame in ProcessedMovie) { // Movie frames will be evaluated lazily } }

理由:

1. Parallel.ForEach 实现起来需要绕一些弯路,首先你需要使用以下的重载在方法:

public static ParallelLoopResult ForEach<TSource >( IEnumerable<TSource> source, Action<TSource, ParallelLoopState, Int64> body)

这个重载的 Action 多包含了 index  参数,这样你在输出的时候就能利用这个值来维持原先的序列顺序。请看下面的例子:

public static double [] PairwiseMultiply(double[] v1, double[] v2) { var length = Math.Min(v1.Length, v2.Lenth); double[] result = new double[length]; Parallel.ForEach(v1, (element, loopstate, elementIndex) => result[elementIndex] = element * v2[elementIndex]); return result; }

你可能已经意识到这里有个明显的问题:我们使用了固定长度的数组。如果传入的是 IEnumerable 那么你有4个解决方案:

(1) 调用 IEnumerable.Count() 来获取数据长度,然后用这个值实例化一个固定长度的数组,然后使用上例的代码。

(2) The second option would be to materialize the original collection before using it; in the event that your input data set is prohibitively large, neither of the first two options will be feasible.(没看懂贴原文)

(3) 第三种方式是采用返回一个哈希集合的方式,这种方式下通常需要至少2倍于传入数据的内存,所以处理大数据时请慎用。

(4) 自己实现排序算法(保证传入数据与传出数据经过排序后次序一致)

2. 相比之下 PLINQ 的 AsOrdered 方法如此简单,而且该方法能处理流式的数据,从而允许传入数据是延迟实现的(lazy materialized)

场景三:流数据 之 并行处理(使用 PLINQ)

PLINQ 能输出流数据,这个特性在一下场合非常有用:

1. 结果集不需要是一个完整的处理完毕的数组,即:任何时间点下内存中仅保持数组中的部分信息

2. 你能够在一个单线程上遍历输出结果(就好像他们已经存在/处理完了)

示例:

public static void AnalyzeStocks(IEnumerable<Stock> Stocks) { var StockRiskPortfolio = Stocks .AsParallel() .AsOrdered() .Select(stock => new { Stock = stock, Risk = ComputeRisk(stock)}) .Where(stockRisk => ExpensiveRiskAnalysis(stockRisk.Risk)); foreach (var stockRisk in StockRiskPortfolio) { SomeStockComputation(stockRisk.Risk); // StockRiskPortfolio will be a stream of results } }

这里使用一个单线程的 foreach 来对 PLINQ 的输出进行后续处理,通常情况下 foreach 不需要等待 PLINQ 处理完所有数据就能开始运作。

PLINQ 也允许指定输出缓存的方式,具体可参照 PLINQ 的 WithMergeOptions 方法,及 ParallelMergeOptions 枚举

场景四:处理两个集合(使用 PLINQ)

PLINQ 的 Zip 方法提供了同时遍历两个集合并进行结合元算的方法,并且它可以与其他查询处理操作结合,实现非常复杂的机能。

示例:

public static IEnumerable<T> Zipping<T>(IEnumerable<T> a, IEnumerable<T> b) { return a .AsParallel() .AsOrdered() .Select(element => ExpensiveComputation(element)) .Zip( b .AsParallel() .AsOrdered() .Select(element => DifferentExpensiveComputation(element)), (a_element, b_element) => Combine(a_element,b_element)); }

示例中的两个数据源能够并行处理,当双方都有一个可用元素时提供给 Zip 进行后续处理(Combine)。

Parallel.ForEach 也能实现类似的 Zip 处理:

public static IEnumerable<T> Zipping<T>(IEnumerable<T> a, IEnumerable<T> b) { var numElements = Math.Min(a.Count(), b.Count()); var result = new T[numElements]; Parallel.ForEach(a, (element, loopstate, index) => { var a_element = ExpensiveComputation(element); var b_element = DifferentExpensiveComputation(b.ElementAt(index)); result[index] = Combine(a_element, b_element); }); return result; }

当然使用 Parallel.ForEach 后你就得自己确认是否要维持原始序列,并且要注意数组越界访问的问题。

场景五:线程局部变量

Parallel.ForEach 提供了一个线程局部变量的重载,定义如下:

public static ParallelLoopResult ForEach<TSource, TLocal>( IEnumerable<TSource> source, Func<TLocal> localInit, Func<TSource, ParallelLoopState, TLocal,TLocal> body, Action<TLocal> localFinally)

使用的示例:

public static List<R> Filtering<T,R>(IEnumerable<T> source) { var results = new List<R>(); using (SemaphoreSlim sem = new SemaphoreSlim(1)) { Parallel.ForEach(source, () => new List<R>(), (element, loopstate, localStorage) => { bool filter = filterFunction(element); if (filter) localStorage.Add(element); return localStorage; }, (finalStorage) => { lock(myLock) { results.AddRange(finalStorage) }; }); } return results; }

线程局部变量有什么优势呢?请看下面的例子(一个网页抓取程序):

public static void UnsafeDownloadUrls () { WebClient webclient = new WebClient(); Parallel.ForEach(urls, (url,loopstate,index) => { webclient.DownloadFile(url, filenames[index] + ".dat"); Console.WriteLine("{0}:{1}", Thread.CurrentThread.ManagedThreadId, url); }); }

通常第一版代码是这么写的,但是运行时会报错“System.NotSupportedException -> WebClient does not support concurrent I/O operations.”。这是因为多个线程无法同时访问同一个 WebClient 对象。所以我们会把 WebClient 对象定义到线程中来:

public static void BAD_DownloadUrls () { Parallel.ForEach(urls, (url,loopstate,index) => { WebClient webclient = new WebClient(); webclient.DownloadFile(url, filenames[index] + ".dat"); Console.WriteLine("{0}:{1}", Thread.CurrentThread.ManagedThreadId, url); }); }

修改之后依然有问题,因为你的机器不是服务器,大量实例化的 WebClient 迅速达到你机器允许的虚拟连接上限数。线程局部变量可以解决这个问题:

public static void downloadUrlsSafe()
{
	Parallel.ForEach(urls,
		() => new WebClient(), (url, loopstate, index, webclient) => { webclient.DownloadFile(url, filenames[index]+".dat"); Console.WriteLine("{0}:{1}", Thread.CurrentThread.ManagedThreadId, url); return webclient; }, (webclient) => { }); }

这样的写法保证了我们能获得足够的 WebClient 实例,同时这些 WebClient 实例彼此隔离仅仅属于各自关联的线程。

虽然 PLINQ 提供了 ThreadLocal<T> 对象来实现类似的功能:

public static void downloadUrl() { var webclient = new ThreadLocal<WebClient>(()=> new WebClient ()); var res = urls .AsParallel() .ForAll( url => { webclient.Value.DownloadFile(url, host[url] +".dat")); Console.WriteLine("{0}:{1}", Thread.CurrentThread.ManagedThreadId, url); }); }

但是请注意:ThreadLocal<T> 相对而言开销更大!

场景五:退出操作 (使用 Parallel.ForEach)

Parallel.ForEach 有个重载声明如下,其中包含一个 ParallelLoopState 对象:

public static ParallelLoopResult ForEach<TSource >( IEnumerable<TSource> source, Action<TSource, ParallelLoopState> body)

ParallelLoopState.Stop() 提供了退出循环的方法,这种方式要比其他两种方法更快。这个方法通知循环不要再启动执行新的迭代,并尽可能快的推出循环。

ParallelLoopState.IsStopped 属性可用来判定其他迭代是否调用了 Stop 方法。

示例:

public static boolean FindAny<T,T>(IEnumerable<T> TSpace, T match) where T: IEqualityComparer<T> { var matchFound = false; Parallel.ForEach(TSpace, (curValue, loopstate) => { if (curValue.Equals(match) ) { matchFound = true; loopstate.Stop(); } }); return matchFound; }

ParallelLoopState.Break() 通知循环继续执行本元素前的迭代,但不执行本元素之后的迭代。最前调用 Break 的起作用,并被记录到 ParallelLoopState.LowestBreakIteration 属性中。这种处理方式通常被应用在一个有序的查找处理中,比如你有一个排序过的数组,你想在其中查找匹配元素的最小 index,那么可以使用以下的代码:

public static int FindLowestIndex<T,T>(IEnumerable<T> TSpace, T match) where T: IEqualityComparer<T> { var loopResult = Parallel.ForEach(source, (curValue, loopState, curIndex) => { if (curValue.Equals(match)) { loopState.Break(); } }); var matchedIndex = loopResult.LowestBreakIteration; return matchedIndex.HasValue ? matchedIndex : -1; }

转载于:https://www.cnblogs.com/x-poior/p/6263161.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/161815.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 将vue项目打包成移动端app(app打包教程)

    Vue项目打包成移动端APP需要准备的工具:Hbuilder目录Vue项目打包成移动端APP首先打包vue到dist目录然后再Hbuilder中打开dist目录然后将dist包含的web项目转换为移动APP项目前几步配置完成后,就可以在手机上进行真机调试了真机测试没有问题,就可以进行下一步—》打包apk了最后将apk安装包安装到手机上就可以正常使用了…

  • Mysql ID生成器

    Mysql ID生成器Mysql可以作为分布式序列号生成器,写下笔记以防忘记。需要一张表server_id_table表中的role为服务器角色名,nextId为当前Id,startId为开始Id,endId为结束Id。使用下列sql语句可以实现分布式Id生成器的功能,而且是线程安全的

  • 大规模储能技术_新技术储备

    大规模储能技术_新技术储备eBPF-Linux性能优化的超能力

  • FEC算法_粒子群算法

    FEC算法_粒子群算法基于IP的语音和视频通话业务为了实时性,一般都是采用UDP进行传输,基站无线一般配置UM模式的RLC承载,因此丢包是不可避免的,在小区信号的边沿则丢包率会更高;为了通话的实时性,一般不会采用接收端发现丢包了然后通知发送端重传的机制,因为这个在应用层的丢包检测和通知发送端重传是非常耗时的。引入前向纠错(FEC)机制是解决实时通话业务丢包的一个很好的机制,FEC的原理就是在发送端发送数据包时插入冗余包…

  • hashmap基本原理_哈希表的实现原理

    hashmap基本原理_哈希表的实现原理HashMap其实也是一个线性的数组实现的,所以可以理解为其存储数据的容器就是一个线性数组。这可能让我们很不解,一个线性的数组怎么实现按键值对来存取数据呢?这里HashMap有做一些处理。  首先HashMap里面实现一个静态内部类Entry,其重要的属性有key,value,next,从属性key,value我们就能很明显的看出来Entry就是HashMap键值对实现的一个基础bean,我们上面说到HashMap的基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Ent

    2022年10月23日
  • SM4算法设计原理

    SM4算法设计原理SM4分组密码算法描述:SM4分组密码算法是一个迭代分组密码算法,由加解密算法和密钥扩展算法组成。SM4分组密码算法采用非平衡Feistel结构,分组长度为128b密钥长度为128b。加密算法与密钥扩展算法均采用非线性迭代结构。加密运算和解密运算的算法结构相同,解密运算的轮密钥的使用顺序与加密运算相反。密钥及密钥参量:SM4分组密码算法的加密密钥长度为128b,表示为MK=(MK0,M…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号