秒杀多线程第五篇 经典线程同步 关键段CS[通俗易懂]

秒杀多线程第五篇 经典线程同步 关键段CS[通俗易懂]上一篇《秒杀多线程第四篇一个经典的多线程同步问题》提出了一个经典的多线程同步互斥问题,本篇将用关键段CRITICAL_SECTION来尝试解决这个问题。本文首先介绍下如何使用关键段,然后再深层次的分析下关键段的实现机制与原理。关键段CRITICAL_SECTION一共就四个函数,使用很是方便。下面是这四个函数的原型和使用说明。 函数功能:初始化函数原型:voidInitializeCritic

大家好,又见面了,我是你们的朋友全栈君。

上一篇《秒杀多线程第四篇 一个经典的多线程同步问题》提出了一个经典的多线程同步互斥问题,本篇将用关键段CRITICAL_SECTION来尝试解决这个问题。

本文首先介绍下如何使用关键段,然后再深层次的分析下关键段的实现机制与原理。

关键段CRITICAL_SECTION一共就四个函数,使用很是方便。下面是这四个函数的原型和使用说明。

 

函数功能:初始化

函数原型:

void InitializeCriticalSection(LPCRITICAL_SECTIONlpCriticalSection);

函数说明:定义关键段变量后必须先初始化。

 

函数功能:销毁

函数原型:

void DeleteCriticalSection(LPCRITICAL_SECTIONlpCriticalSection);

函数说明:用完之后记得销毁。

 

函数功能:进入关键区域

函数原型:

void EnterCriticalSection(LPCRITICAL_SECTIONlpCriticalSection);

函数说明:系统保证各线程互斥的进入关键区域。

 

函数功能:离开关关键区域

函数原型:

void LeaveCriticalSection(LPCRITICAL_SECTIONlpCriticalSection);

 

然后在经典多线程问题中设置二个关键区域。一个是主线程在递增子线程序号时,另一个是各子线程互斥的访问输出全局资源时。详见代码:

#include <stdio.h>
#include <process.h>
#include <windows.h>
long g_nNum;
unsigned int __stdcall Fun(void *pPM);
const int THREAD_NUM = 10;
//关键段变量声明
CRITICAL_SECTION  g_csThreadParameter, g_csThreadCode;
int main()
{
	printf("     经典线程同步 关键段\n");
	printf(" -- by MoreWindows( http://blog.csdn.net/MoreWindows ) --\n\n");

	//关键段初始化
	InitializeCriticalSection(&g_csThreadParameter);
	InitializeCriticalSection(&g_csThreadCode);
	
	HANDLE  handle[THREAD_NUM];	
	g_nNum = 0;	
	int i = 0;
	while (i < THREAD_NUM) 
	{
		EnterCriticalSection(&g_csThreadParameter);//进入子线程序号关键区域
		handle[i] = (HANDLE)_beginthreadex(NULL, 0, Fun, &i, 0, NULL);
		++i;
	}
	WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE);

	DeleteCriticalSection(&g_csThreadCode);
	DeleteCriticalSection(&g_csThreadParameter);
	return 0;
}
unsigned int __stdcall Fun(void *pPM)
{
	int nThreadNum = *(int *)pPM; 
	LeaveCriticalSection(&g_csThreadParameter);//离开子线程序号关键区域

	Sleep(50);//some work should to do

	EnterCriticalSection(&g_csThreadCode);//进入各子线程互斥区域
	g_nNum++;
	Sleep(0);//some work should to do
	printf("线程编号为%d  全局资源值为%d\n", nThreadNum, g_nNum);
	LeaveCriticalSection(&g_csThreadCode);//离开各子线程互斥区域
	return 0;
}

运行结果如下图:

秒杀多线程第五篇 经典线程同步 关键段CS[通俗易懂]

可以看出来,各子线程已经可以互斥的访问与输出全局资源了,但主线程与子线程之间的同步还是有点问题。

       这是为什么了?

要解开这个迷,最直接的方法就是先在程序中加上断点来查看程序的运行流程。断点处置示意如下:

秒杀多线程第五篇 经典线程同步 关键段CS[通俗易懂]

然后按F5进行调试,正常来说这两个断点应该是依次轮流执行,但实际调试时却发现不是如此,主线程可以多次通过第一个断点即

       EnterCriticalSection(&g_csThreadParameter);//进入子线程序号关键区域

这一语句。这说明主线程能多次进入这个关键区域!找到主线程和子线程没能同步的原因后,下面就来分析下原因的原因吧^_^

 

先找到关键段CRITICAL_SECTION的定义吧,WinBase.h中被定义成RTL_CRITICAL_SECTION。而RTL_CRITICAL_SECTIONWinNT.h中声明,它其实是个结构体

typedef struct _RTL_CRITICAL_SECTION {

    PRTL_CRITICAL_SECTION_DEBUGDebugInfo;

    LONGLockCount;

    LONGRecursionCount;

    HANDLEOwningThread; // from the thread’s ClientId->UniqueThread

    HANDLELockSemaphore;

    DWORDSpinCount;

} RTL_CRITICAL_SECTION, *PRTL_CRITICAL_SECTION;

各个参数的解释如下:

第一个参数:PRTL_CRITICAL_SECTION_DEBUGDebugInfo;

调试用的。

 

第二个参数:LONGLockCount;

初始化为-1n表示有n个线程在等待。

 

第三个参数:LONGRecursionCount;  

表示该关键段的拥有线程对此资源获得关键段次数,初为0

 

第四个参数:HANDLEOwningThread;  

即拥有该关键段的线程句柄,微软对其注释为——from the thread’s ClientId->UniqueThread

 

第五个参数:HANDLELockSemaphore;

实际上是一个自复位事件。

 

第六个参数:DWORDSpinCount;    

旋转锁的设置,单CPU下忽略

 

由这个结构可以知道关键段会记录拥有该关键段的线程句柄即关键段是有“线程所有权”概念的。事实上它会用第四个参数OwningThread来记录获准进入关键区域的线程句柄,如果这个线程再次进入,EnterCriticalSection()会更新第三个参数RecursionCount以记录该线程进入的次数并立即返回让该线程进入。其它线程调用EnterCriticalSection()则会被切换到等待状态,一旦拥有线程所有权的线程调用LeaveCriticalSection()使其进入的次数为0时,系统会自动更新关键段并将等待中的线程换回可调度状态。

因此可以将关键段比作旅馆的房卡,调用EnterCriticalSection()即申请房卡,得到房卡后自己当然是可以多次进出房间的,在你调用LeaveCriticalSection()交出房卡之前,别人自然是无法进入该房间。

回到这个经典线程同步问题上,主线程正是由于拥有“线程所有权”即房卡,所以它可以重复进入关键代码区域从而导致子线程在接收参数之前主线程就已经修改了这个参数。所以关键段可以用于线程间的互斥,但不可以用于同步。

 

另外,由于将线程切换到等待状态的开销较大,因此为了提高关键段的性能,Microsoft将旋转锁合并到关键段中,这样EnterCriticalSection()会先用一个旋转锁不断循环,尝试一段时间才会将线程切换到等待状态。下面是配合了旋转锁的关键段初始化函数

函数功能:初始化关键段并设置旋转次数

函数原型:

BOOLInitializeCriticalSectionAndSpinCount(

  LPCRITICAL_SECTIONlpCriticalSection,

  DWORDdwSpinCount);

函数说明:旋转次数一般设置为4000

 

函数功能:修改关键段的旋转次数

函数原型:

DWORDSetCriticalSectionSpinCount(

  LPCRITICAL_SECTIONlpCriticalSection,

  DWORDdwSpinCount);

 

Windows核心编程》第五版的第八章推荐在使用关键段的时候同时使用旋转锁,这样有助于提高性能。值得注意的是如果主机只有一个处理器,那么设置旋转锁是无效的。无法进入关键区域的线程总会被系统将其切换到等待状态。

 

 

最后总结下关键段:

1.关键段共初始化化、销毁、进入和离开关键区域四个函数。

2.关键段可以解决线程的互斥问题,但因为具有“线程所有权”,所以无法解决同步问题。

3.推荐关键段与旋转锁配合使用。

 

下一篇《秒杀多线程第六篇 经典线程同步 事件Event》将介绍使用事件Event来解决这个经典线程同步问题。

 

转载请标明出处,原文地址:http://blog.csdn.net/morewindows/article/details/7442639

如果觉得本文对您有帮助,请点击支持一下,您的支持是我写作最大的动力,谢谢。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/159673.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 小程序功能页面配置怎么填_设置企业级应用在哪

    小程序功能页面配置怎么填_设置企业级应用在哪企业微信自建应用流程

    2022年10月21日
  • 网络协议之视频直播核心技术讲解

    网络协议之视频直播核心技术讲解网络视频直播存在已有很长一段时间,随着移动上下行带宽提升及资费的下调,视频直播被赋予了更多娱乐和社交的属性,人们享受随时随地进行直播和观看,直播的打开时间和延迟变成了影响产品功能发展重要指标。那么,问题来了:如何实现低延迟、秒开的直播?先来看看视频直播的5个关键的流程:录制->编码->网络传输->解码->播放每个环节对于直播的延迟都会产生不同程度的影响。这里重点分析移动设备的情况。受限于技术的成熟度、硬件环境等,我们针对移动场景简单总结出直播延迟优化的4个点…

  • 基于FPGA的SDRAM控制器设计(一)「建议收藏」

    基于FPGA的SDRAM控制器设计(一)「建议收藏」基于FPGA的SDRAM控制器设计(一)1.SDRAM控制器整体框架2.UART_RX模块3.UART_TX模块4.RX与TX模块的整合5.需要注意的问题1.SDRAM控制器整体框架图1.1整体框架PC端通过串口模块UART_RX发送读写命令以及数据到Cmd_encode模块,由后者分离出数据存入wfifo模块,剩下的读写命令传送到Sdram_top模块对SDRAM进行写操作或者从SDRAM读数据到rfifo模块并通过UART_TX模块将数据送出到PC端。2.UART_RX模块主体代码(见

  • python使用蒙特卡洛树(MCTS)算法实现黑白棋miniAlphaGo for Reversi[通俗易懂]

    python使用蒙特卡洛树(MCTS)算法实现黑白棋miniAlphaGo for Reversi[通俗易懂]黑白棋(reversi),也叫苹果棋,翻转棋,是一个经典的策略性游戏。一般棋子双面为黑白两色,故称“黑白棋”。因为行棋之时将对方棋子翻转,变为己方棋子,故又称“翻转棋”。棋子双面为红、绿色的成为“苹果棋”。它使用8*8的棋盘,由两人执黑子和白子轮流下棋,最后子多方为胜。规则:(1)黑方先行,双方交替下棋。(2)一步合法的棋步包含:在一个空格新落下一个棋子,并且反转对手一个或多个棋子。(3)新落下的棋子与棋盘上已有的同色棋子间,对方被夹住的所有棋子都要反转过来。可以横着夹,竖着夹,斜着夹。夹住的

  • python lambda表达式详解

    python lambda表达式详解@pythonlambda表达式详解1、lambda简介先来看一段代码示例:第一行是lambda声明,x,y相当于传入的参数,整个函数会返回x+y的值。lambda作为一个表达式,定义了一个匿名函数,上例的代码x,y为入口参数,x+y为函数体。在这里lambda简化了函数定义的书写形式。python允许用lambda关键字创造匿名函数。匿名是不需要以标准的方式来声明,比如说使用def…

    2022年10月18日
  • 解决博客群发问题的实用Seo工具

    解决博客群发问题的实用Seo工具一直以来,博客群发对于中文seo来说都是很多人在追求的方式。现在,英文seo也可以在一定程度上实现博客群发的功能,而仅仅只需要一个博客群发工具——ZoundryRaven。ZoundryRaven博客群发工具是基于国外主流博客程序wordpress以及其他如blogger、windowslivespace等大型社区开发而成,可以在不用多次手动输入账号密码等直接将文章发布到多个免费博客或

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号