STM32–RFID无线射频技术(RC522刷卡模块)

STM32–RFID无线射频技术(RC522刷卡模块)STM32+RC522刷卡模块,亲测可用!!!

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

1、RFID的概念

 射频识别,即RFID是Radio Frequency Ident ificat ion的缩写,又称无线射频识别,是一.种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。一套完整RFID硬件统由Reader 与Transponder 两部份组成,其动作原理为由Reader 发射一特定频率之无限电波能量给Transponder,用以驱动Transponder电路将內部之ID Code送出,此时Reader便接收此ID Code Transponder的特殊在于免用电池、免接触、免刷卡故不怕脏污,且晶片密码为世界唯一无法复制, 安全性高、长寿命。

2、RFID的工作原理

 射频识别系统的基本模型如图所示。其中,电子标签又称为射频标签、应答器、数据载体;阅读器又称为读出装置,扫描器、通讯器、读写器(取决于电子标签是否可以无线改写数据)。电子标签与阅读器之间通过耦合元件实现射频信号的空间(无接触)耦合、在耦合通道内,根据时序关系,实现能量的传递、数据的交换。
在这里插入图片描述

(1)RFID中间件的概念

 为解决分布异构问题,大们提出了中间件(middleware)的概念。中间件是位于平台(硬件和操作系统)和应用之间的通用服务,这些服务具有标准的程序接口和协议。针对不同的操作系统和硬件平台,它们可以有符合接口和协议规范的多种实现。
在这里插入图片描述

(2)RFID中间件具有以下特点:

  独立于架构( Insulat ion Infrastructure) RFID中间件独立并介于RFID读写器与后端应用程序之间,并且能够与多个RFID读写器以及多个后端应用程序连接,以减轻架构与维护的复杂性。
  数据流(DataFlow)RFID的主要目的在于将实体对象转换为信息环境下的虚拟对象,因此数据处理是RFID最重要的功能。RFID中间件具有数据的搜集、过滤、整合与传递等特性,以便将正确的对象信息传到企业后端的应用系统。
  处理流(Process Flow) RFID中间件采用程序逻辑及存储再转送(Store-and -Forward)的功能来提供顺序的消息流,具有数据流设计与管理的能力。

(3)RFID中间件的意义:

  RFID中间件是- .种面向消息的中间件,信息( Information)是以消息(Message) 的形式,从一个程序传送到另一个或多 个程序。信息可以以异步 (Asynchronous)的方式传送,所以传送者不必等待回应。面向消息的中间件包含的功能不仅是传递(Passing) 信息,还必须包括解译数据、安全性、数据广播、错误恢复、定位网络资源、找出符合成本的路径、消息与要求的优先次序以及延伸的除错。

3、RFID频率划分

  目前定义的RFID产品的工作频率有低频、高频和超高频(甚高频)、微波等频率范围。不同频段的FID产品有不同的特性。具体的划分方法如下图:
在这里插入图片描述

(1)RFID低频特性

  1. 工作在低频的感应器的一-般工作频率从120KHz到134KHz, TI的工作频率为134.2KHz。该频段的
    波长大约为2500m;
  2. 除了金属材料影响外,一般低频能够穿过任意材料的物品而不降低它的读取距离;
  3. 工作在低频的读写器在全球没有任何特殊的许可限制;
  4. 低频产品有不同的封装形式。好的封装形式就是价格太贵,但是有10年以上的使用寿命;
  5. 虽然该频率的磁场区域下降很快,但是能够产生相对均匀的读写区域;
  6. 相对于其他频段的RFID产品,该频段数据传输速率比较慢;
  7. 感应器的价格相对与其他频段来说要贵。

(2)RFID高频特性

  1. 工作频率为13. 56MHz,该频率的波长大概为22m。
  2. 除了金属材料外,该频率的波长可以穿过大多数的材料,但是往往会降低读取距离。感应器需要离开金属-一段距离。
  3. 该频段在全球都得到认可并没有特殊的限制。
  4. 感应器一般以电子标签的形式。
  5. 虽然该频率的磁场区域下降很快,但是能够产生相对均匀的读写区域。
  6. 该系统具有防冲撞特性,可以同时读取多个电子标签。
  7. 可以把某些数据信息写入标签中。
  8. 数据传输速率比低频要快,价格不是很贵。

(3)RFID超高频特性

  1. 在该频段,全球的定义不是很相同-欧洲和部分亚洲定义的频率为868MHz,北美定义的频段
    为902到905MHz之间,在日本建议的频段为950到956之间。该频段的波长大概为30cm左右。
  2. 目前,该频段功率输出目前统一的定义(美国定义为4W,欧洲定义为500mW)。 可能欧洲限制会上升到2W EIRP。
  3. 甚高频频段的电波不能通过许多材料,特别是水,灰尘,雾等悬浮颗粒物资。相对于高频的电子标
    签来说,该频段的电子标签不需要和金属分开来。
  4. 电子标签的天线一般是长条和标签状。天线有线性和圆极化两种设计,满足不同应用的需求。
  5. 该频段有好的读取距离,但是对读取区域很难进行定义。
  6. 有很高的数据传输速率,在很短的时间可以读取大量的电子标签。

4、RFID标签的组成

  1. RFID品片(包含逻辑控制单元、记忆体和收发器,进行解码、解密和错误检查等运算功能)
  2. 天线(用于接收读取器发送的射频资料或传送出本身的识别资料)
  3. 电力来源(主动式:由标签内部所附电源所提供;被动式:由读写器送出的无线电波提供)

5、ISO14443协议

  ISO14443协议是Contactless card standards (非接触式IC卡标准)协议。有英文版原版由4个部分组成:第一部分:物理特性;第二部分:频谱功率和信号接口;第三部分:初始化和防冲突算法;第四部分:通讯协议。

6、RC522

(1)RCC52概述

  MF RC522是应用于13.56MHz非接触式通信中高集成度读写卡系列芯片中的一员。是NXP公司针对“三表”应用推出的一款低电压、低成本、体积小的非接触式读写卡芯片,是智能仪表和便携式手持设备研发的较好选择;
  MFRC522的内部发送器部分可驱动读写器天线与ISO 14443A/MIFARE卡和应答机的通信,无需其它的电路。64字节的发送和接收FIFO缓冲区,灵活的中断模式内部振荡器,连27.12MHz的晶体。可实现各种不同主机接口的功能:


SPI接口


串行UART (类似RS232,电压电平取决于提供的管脚电压)


I2C接口

在这里插入图片描述

(2)RCC52寄存器

●CommandReg启动和停止命令的执行。
●ComIrqReg包含中断请求标志
●ErrorReg错误标志,指示执行的上个命令的错误状态
●Status2Reg包含接收器和发送器的状态标志
●FIFODtataReg64字节FIFO缓冲区的输入和输出
●FIFOLevelReg指示FIFO中存储的字节数
●ControlReg不同的控制寄存器
●BitFramingReg面向位的帧的调节
●CollReg RF接口上检测到的第一个位冲突的位的位置

(3)RCC52功能

SPI接口:
  支持串行外围接口( 兼容SPI)来使能到主机的高速通信。SPI接 口可处理高达10Mbit/s的数据速率。在与主机微控制器通信时,MFRC522 用作从机;在SPI通信中MFRC522模块用作从机。SPI时钟 SCK由主机产生。数据通过MOSI线从主机传输到从机;数据通过MISO线从MFRC522发回到主机。MOSI和MISO传输每个字节时都是高位在前。MOSI上的数据在时钟的上升沿保持不变,在时钟的下降沿改变。MISO也与之类似,在时钟的下降沿,MISO. 上的数据由MFRC522来提供,在时钟的上升沿数据保持不变。
SPI地址:
  地址字节按下面的格式传输。第一个字 节的MSB位设置使用的模式。 MSB位为1 时从MFRC522读出数据; MSB 位为0时将数据写入MFRC522。第-一个字节的位6-1定义地址,后一位应当设置为0
在这里插入图片描述
FIFO缓冲区:
  FIFO缓冲区的输入和输出数据总线连接到FIFODataReg寄存器。通过写FIFODataReg寄存器来将一个字节的数据存入FIFO缓冲区,之后内部FIFO缓冲区写指针加1。除了读写FIFO缓冲区外,FIFO 缓冲区指针还可通过置位寄存器FIFOLevelReg的FlushBuffer位来复位。从而,FIFOLevel 位被清零,寄存器ErrorReg的BufferOvfl 位被清零,实际存储的字节不能再访问已经存放在FIFO缓冲区中的字节数:寄存器FIFOLevelReg的FIFOlevel字段

(4)RCC52命令集

  1. IDLE命令,MFRC522 处于空闲模式。该命令也用来终J正实际正在执行的命令
    CALCCRC命令,FIFO的内容被传输到CRC协处理器并执行CRC计算这个命令必须通过向命令寄存器写入任何一个命令(如空闲命令)来软件清除
  2. TRANSMIT命令,发送FIFO的内容。在发送FIFO的内容之前必须对所有相关的寄存器进行设置。该命令在FIFO变成空后自动终止
  3. RECEIVE命令,该命令在接收到的数据流结束时自动终止。
  4. TRANSCEIVE命令,该循环命令重复发送FIFO的数据,并不断接收RF场的数据。第一个动作是发送,发送结束后命令变为接收数据流。
  5. MFAUTENT命令(P69,17),该命令用来处理Mifare认证以使能到任何Mifare普通卡的安全通信。在命令激活前以下数据必须被写入FIFO:认证命令码, 块地址,秘钥,序列号。该命令在Mifare卡被认证且Status2Reg寄存器的MFCrypto1On位置位时自动终止。
  6. SOFTRESET命令,所有寄存器都设置成复位值。命令完成后自动终止。
    在这里插入图片描述

(5)RCC52与STM32接线图

管脚 单片机IO口
SDA PB12
SCK PB13
MOSI PB15
MISO PB14
ICQ 悬空
GND GND
RST PA8
VCC VCC

(6)RCC52代码

rc522.h

#ifndef __RC522_H
#define __RC522_H 
#include "stm32f10x.h"
 

//MF522命令字

#define PCD_IDLE 0x00 //取消当前命令
#define PCD_AUTHENT 0x0E //验证密钥
#define PCD_RECEIVE 0x08 //接收数据
#define PCD_TRANSMIT 0x04 //发送数据
#define PCD_TRANSCEIVE 0x0C //发送并接收数据
#define PCD_RESETPHASE 0x0F //复位
#define PCD_CALCCRC 0x03 //CRC计算
 

//Mifare_One卡片命令字

#define PICC_REQIDL 0x26 //寻天线区内未进入休眠状态
#define PICC_REQALL 0x52 //寻天线区内全部卡
#define PICC_ANTICOLL1 0x93 //防冲撞
#define PICC_ANTICOLL2 0x95 //防冲撞
#define PICC_AUTHENT1A 0x60 //验证A密钥
#define PICC_AUTHENT1B 0x61 //验证B密钥
#define PICC_READ 0x30 //读块
#define PICC_WRITE 0xA0 //写块
#define PICC_DECREMENT 0xC0 //扣款
#define PICC_INCREMENT 0xC1 //充值
#define PICC_RESTORE 0xC2 //调块数据到缓冲区
#define PICC_TRANSFER 0xB0 //保存缓冲区中数据
#define PICC_HALT 0x50 //休眠
 

//MF522 FIFO长度定义

#define DEF_FIFO_LENGTH 64 //FIFO size=64byte
#define MAXRLEN 18
 

//MF522寄存器定义

// PAGE 0
#define RFU00 0x00 
#define CommandReg 0x01 
#define ComIEnReg 0x02 
#define DivlEnReg 0x03 
#define ComIrqReg 0x04 
#define DivIrqReg 0x05
#define ErrorReg 0x06 
#define Status1Reg 0x07 
#define Status2Reg 0x08 
#define FIFODataReg 0x09
#define FIFOLevelReg 0x0A
#define WaterLevelReg 0x0B
#define ControlReg 0x0C
#define BitFramingReg 0x0D
#define CollReg 0x0E
#define RFU0F 0x0F
// PAGE 1 
#define RFU10 0x10
#define ModeReg 0x11
#define TxModeReg 0x12
#define RxModeReg 0x13
#define TxControlReg 0x14
#define TxAutoReg 0x15
#define TxSelReg 0x16
#define RxSelReg 0x17
#define RxThresholdReg 0x18
#define DemodReg 0x19
#define RFU1A 0x1A
#define RFU1B 0x1B
#define MifareReg 0x1C
#define RFU1D 0x1D
#define RFU1E 0x1E
#define SerialSpeedReg 0x1F
// PAGE 2 
#define RFU20 0x20 
#define CRCResultRegM 0x21
#define CRCResultRegL 0x22
#define RFU23 0x23
#define ModWidthReg 0x24
#define RFU25 0x25
#define RFCfgReg 0x26
#define GsNReg 0x27
#define CWGsCfgReg 0x28
#define ModGsCfgReg 0x29
#define TModeReg 0x2A
#define TPrescalerReg 0x2B
#define TReloadRegH 0x2C
#define TReloadRegL 0x2D
#define TCounterValueRegH 0x2E
#define TCounterValueRegL 0x2F
// PAGE 3 
#define RFU30 0x30
#define TestSel1Reg 0x31
#define TestSel2Reg 0x32
#define TestPinEnReg 0x33
#define TestPinValueReg 0x34
#define TestBusReg 0x35
#define AutoTestReg 0x36
#define VersionReg 0x37
#define AnalogTestReg 0x38
#define TestDAC1Reg 0x39 
#define TestDAC2Reg 0x3A 
#define TestADCReg 0x3B 
#define RFU3C 0x3C 
#define RFU3D 0x3D 
#define RFU3E 0x3E 
#define RFU3F 0x3F
 

//和MF522通讯时返回的错误代码

#define MI_OK 0
#define MI_NOTAGERR (1)
#define MI_ERR (2)
 
#define SHAQU1 0X01
#define KUAI4 0X04
#define KUAI7 0X07
#define REGCARD 0xa1
#define CONSUME 0xa2
#define READCARD 0xa3
#define ADDMONEY 0xa4
 
//
//#define spi_cs 1;
//sbit spi_ck=P0^6;
//sbit spi_mosi=P0^7;
//sbit spi_miso=P4^1;
//sbit spi_rst=P2^7;
#define SPIReadByte() SPIWriteByte(0)
u8 SPIWriteByte(u8 byte);
void SPI1_Init(void);
 
#define SET_SPI_CS (GPIOF->BSRR=0X01)
#define CLR_SPI_CS (GPIOF->BRR=0X01)
 
 
 
#define SET_RC522RST GPIOF->BSRR=0X02
#define CLR_RC522RST GPIOF->BRR=0X02
 
 
/***********************RC522 函数宏定义**********************/
#define RC522_CS_Enable() GPIO_ResetBits ( GPIOB, GPIO_Pin_12 )
#define RC522_CS_Disable() GPIO_SetBits ( GPIOB, GPIO_Pin_12 )
 
#define RC522_Reset_Enable() GPIO_ResetBits( GPIOA, GPIO_Pin_8 )
#define RC522_Reset_Disable() GPIO_SetBits ( GPIOA, GPIO_Pin_8 )
 
#define RC522_SCK_0() GPIO_ResetBits( GPIOB, GPIO_Pin_13 )
#define RC522_SCK_1() GPIO_SetBits ( GPIOB, GPIO_Pin_13 )
 
#define RC522_MOSI_0() GPIO_ResetBits( GPIOB, GPIO_Pin_15 )
#define RC522_MOSI_1() GPIO_SetBits ( GPIOB, GPIO_Pin_15 )
 
#define RC522_MISO_GET() GPIO_ReadInputDataBit ( GPIOB, GPIO_Pin_14 )
 
void             RC522_Handel               (void);
void             RC522_Init                 ( void );                       //初始化
void             PcdReset                   ( void );                       //复位
void             M500PcdConfigISOType       ( u8 type );                    //工作方式
char             PcdRequest                 ( u8 req_code, u8 * pTagType ); //寻卡
char             PcdAnticoll                ( u8 * pSnr);                   //读卡号
 
char             PcdSelect                  ( u8 * pSnr );
char             PcdAuthState               ( u8 ucAuth_mode, u8 ucAddr, u8 * pKey, u8 * pSnr );
char             PcdWrite                   ( u8 ucAddr, u8 * pData );
char             PcdRead                    ( u8 ucAddr, u8 * pData );
//void ShowID(u16 x,u16 y, u8 *p, u16 charColor, u16 bkColor); //显示卡的卡号,以十六进制显示
void ShowID(u8 *p);	 //显示卡的卡号,以十六进制显示

extern unsigned char buf1[16];
extern unsigned char buf2[16]; 
 
#endif

rc522.c

#include "rc522.h"
#include "delay.h"
#include "usart.h"
#include <string.h>
#include "oled.h" 
#include "led.h"
// M1卡分为16个扇区,每个扇区由四个块(块0、块1、块2、块3)组成
// 将16个扇区的64个块按绝对地址编号为:0~63
// 第0个扇区的块0(即绝对地址0块),用于存放厂商代码,已经固化不可更改 
// 每个扇区的块0、块1、块2为数据块,可用于存放数据
// 每个扇区的块3为控制块(绝对地址为:块3、块7、块11.....)包括密码A,存取控制、密码B等
 
/******************************* *连线说明: *1--SDA <----->PB12 *2--SCK <----->PB13 *3--MOSI <----->PB15 *4--MISO <----->PB14 *5--悬空 *6--GND <----->GND *7--RST <----->PA8 *8--VCC <----->VCC ************************************/
 
/*全局变量*/
unsigned char CT[2];//卡类型
unsigned char SN[4]; //卡号(低字节在前,高字节在后)
unsigned char RFID[16];			//存放RFID 
unsigned char lxl_bit=0;
unsigned char card1_bit=0;
unsigned char card2_bit=0;
unsigned char card3_bit=0;
unsigned char card4_bit=0;
unsigned char total=0;
unsigned char lxl[4]={ 
   196,58,104,217};
unsigned char card_1[4]={ 
   83,106,11,1};
unsigned char card_2[4]={ 
   208,121,31,57};
unsigned char card_3[4]={ 
   176,177,143,165};
unsigned char card_4[4]={ 
   5,158,10,136};
u8 KEY[6]={ 
   0xff,0xff,0xff,0xff,0xff,0xff};
u8 AUDIO_OPEN[6] = { 
   0xAA, 0x07, 0x02, 0x00, 0x09, 0xBC};
unsigned char RFID1[16]={ 
   0x00,0x00,0x00,0x00,0x00,0x00,0xff,0x07,0x80,0x29,0xff,0xff,0xff,0xff,0xff,0xff};
/*函数声明*/
unsigned char status;
unsigned char s=0x08;
 unsigned char ShowON; 
 
#define RC522_DELAY() delay_us( 20 )

//ID
char ss[255];
//char data[16];

unsigned char snr, buf[16], TagType[2], SelectedSnr[4], DefaultKey[6] = { 
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; 
unsigned char buf1[16];
unsigned char buf2[16];
int a = 1200;
char OK_status;

void RC522_Handel(void)
{ 
   
//
	
    status = PcdRequest(PICC_REQALL,CT);//寻卡
    
// printf("\r\nstatus>>>>>>%d\r\n", status);
    
    if(status==MI_OK)//寻卡成功
    { 
   
				 printf("\r\n寻卡成功\r\n");
         status=MI_ERR;
         status = PcdAnticoll(SN);//防冲撞 
    }
 
    if (status==MI_OK)//防衝撞成功
    { 
   
// int d;
// char cStr [ 30 ];
        status=MI_ERR;		
// printf("\r\n card_0>>>>>>%d\r\n", SN[0]);
// printf("\r\n card_1>>>>>>%d\r\n", SN[1]);
// printf("\r\n card_2>>>>>>%d\r\n", SN[2]);
// printf("\r\n card_3>>>>>>%d\r\n", SN[3]);
// card_number_D=(SN[2]<<16)+(SN[1]<<8)+(SN[0]); //获取印刷卡号
// printf("\r\n卡号:[%d]\r\n",card_number_D);
		
// sprintf ( cStr, "%d%d%d%d", SN [ 0 ], SN [ 1 ], SN [ 2 ], SN[ 3 ] );
 printf ( "%s\n",cStr ); //在这里打印出来卡号
// OLED_Clear();
// for(d=0;d<10;d++)
// { 
   
// OLED_ShowNum(d*8,0,cStr[d]-0x30,1,16);
// }
// ShowID(0,200,SN,BLUE,WHITE); //在液晶屏上显示卡的ID号
				  ShowID(SN); // 串口打印卡的ID号
        
// if((SN[0]==lxl[0])&&(SN[1]==lxl[1])&&(SN[2]==lxl[2])&&(SN[3]==lxl[3]))
// { 
   
// lxl_bit=1;
// printf("\r\nThe User is:card_0\r\n");
// OLED_ShowString(0,3,"\r\nThe User is:card_0\r\n",16);
// 
// }
// if((SN[0]==card_1[0])&&(SN[1]==card_1[1])&&(SN[2]==card_1[2])&&(SN[3]==card_1[3]))
// { 
   
// card1_bit=1;
// printf("\r\nThe User is:card_1\r\n");
// 
// }
// if((SN[0]==card_2[0])&&(SN[1]==card_2[1])&&(SN[2]==card_2[2])&&(SN[3]==card_2[3]))
// { 
   
// card2_bit=1;
// printf("\r\nThe User is:card_2\r\n");
// 
// }
// 
// if((SN[0]==card_3[0])&&(SN[1]==card_3[1])&&(SN[2]==card_3[2])&&(SN[3]==card_3[3]))
// { 
   
// card3_bit=1;
// printf("\r\nThe User is:card_3\r\n");
// 
// }
// if((SN[0]==card_4[0])&&(SN[1]==card_4[1])&&(SN[2]==card_4[2])&&(SN[3]==card_4[3]))
// { 
   
// card4_bit=1;
// printf("\r\nThe User is:card_4\r\n");
// 
// }
        //total=card1_bit+card2_bit+card3_bit+card4_bit+lxl_bit;
        status =PcdSelect(SN);
 
    }
    else
    { 
   
        
       // TODO 
    }
    if(status==MI_OK)//選卡成功
    { 
   
 
        status=MI_ERR;
        status =PcdAuthState(0x60,0x09,KEY,SN);
     }
    if(status==MI_OK)//驗證成功
    { 
   
        status=MI_ERR;
        status=PcdRead(s,RFID);
    }
 
    if(status==MI_OK)//讀卡成功
    { 
   
        status=MI_ERR;
        delay_ms(100);
    }	
 
}


void RC522_Init ( void )
{ 
   
	SPI1_Init();
	
	RC522_Reset_Disable();
	
	RC522_CS_Disable();
    
  PcdReset ();
    
	M500PcdConfigISOType ( 'A' );//设置工作方式
 
}
 
void SPI1_Init(void)	
{ 
   
		GPIO_InitTypeDef GPIO_InitStructure;
		RCC_APB2PeriphClockCmd(	RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE );//PORTB时钟使能 
		
		// CS
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;	 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
    GPIO_Init(GPIOB, &GPIO_InitStructure);					 //根据设定参数初始化PB12
    
    // SCK
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;	 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
    GPIO_Init(GPIOB, &GPIO_InitStructure);
    
    // MISO
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14;	 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; 		 //推挽输出
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
    GPIO_Init(GPIOB, &GPIO_InitStructure);
    
    // MOSI
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15;	 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
    GPIO_Init(GPIOB, &GPIO_InitStructure);
    
    // RST
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;	 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
    GPIO_Init(GPIOA, &GPIO_InitStructure);
    
}
 
 
/* * 函数名:SPI_RC522_SendByte * 描述 :向RC522发送1 Byte 数据 * 输入 :byte,要发送的数据 * 返回 : RC522返回的数据 * 调用 :内部调用 */
void SPI_RC522_SendByte ( u8 byte )
{ 
   
    u8 counter;
	
    for(counter=0;counter<8;counter++)
    { 
        
			if ( byte & 0x80 )
					RC522_MOSI_1 ();
			else 
					RC522_MOSI_0 ();
 
// delay_us ( 3 );
			RC522_DELAY();
		
			RC522_SCK_0 ();
 
// delay_us ( 1 );
// delay_us ( 3 );
			RC522_DELAY();
			 
			RC522_SCK_1();
 
// delay_us ( 3 );
			RC522_DELAY();
			 
			byte <<= 1; 
			
    } 
	
}
 
 
/* * 函数名:SPI_RC522_ReadByte * 描述 :从RC522发送1 Byte 数据 * 输入 :无 * 返回 : RC522返回的数据 * 调用 :内部调用 */
u8 SPI_RC522_ReadByte ( void )
{ 
   
	u8 counter;
	u8 SPI_Data;
 
 
	for(counter=0;counter<8;counter++)
	{ 
   
			SPI_Data <<= 1;
	 
			RC522_SCK_0 ();
 
// delay_us ( 3 );
		    RC522_DELAY();
		
			if ( RC522_MISO_GET() == 1)
					SPI_Data |= 0x01;
 
// delay_us ( 2 );
// delay_us ( 3 );
			RC522_DELAY();
 
			RC522_SCK_1 ();
	
// delay_us ( 3 );
			RC522_DELAY();
			
	}
	
 
// printf("****%c****",SPI_Data);
	return SPI_Data;
}
 
 
/* * 函数名:ReadRawRC * 描述 :读RC522寄存器 * 输入 :ucAddress,寄存器地址 * 返回 : 寄存器的当前值 * 调用 :内部调用 */
u8 ReadRawRC ( u8 ucAddress )
{ 
   
	u8 ucAddr, ucReturn;
	
	
	ucAddr = ( ( ucAddress << 1 ) & 0x7E ) | 0x80;
	
	RC522_CS_Enable();
	
	SPI_RC522_SendByte ( ucAddr );
	
	ucReturn = SPI_RC522_ReadByte ();
	
	RC522_CS_Disable();
 
	return ucReturn;
}
 
 
/* * 函数名:WriteRawRC * 描述 :写RC522寄存器 * 输入 :ucAddress,寄存器地址 * ucValue,写入寄存器的值 * 返回 : 无 * 调用 :内部调用 */
void WriteRawRC ( u8 ucAddress, u8 ucValue )
{ 
     
	u8 ucAddr;
 
	ucAddr = ( ucAddress << 1 ) & 0x7E;
	
	RC522_CS_Enable();
	
	SPI_RC522_SendByte ( ucAddr );
	
	SPI_RC522_SendByte ( ucValue );
	
	RC522_CS_Disable();	
}
 
 
/* * 函数名:SetBitMask * 描述 :对RC522寄存器置位 * 输入 :ucReg,寄存器地址 * ucMask,置位值 * 返回 : 无 * 调用 :内部调用 */
void SetBitMask ( u8 ucReg, u8 ucMask )  
{ 
   
    u8 ucTemp;
 
    ucTemp = ReadRawRC ( ucReg );
	
    WriteRawRC ( ucReg, ucTemp | ucMask );         // set bit mask
 
}
 
 
/* * 函数名:ClearBitMask * 描述 :对RC522寄存器清位 * 输入 :ucReg,寄存器地址 * ucMask,清位值 * 返回 : 无 * 调用 :内部调用 */
void ClearBitMask ( u8 ucReg, u8 ucMask )  
{ 
   
    u8 ucTemp;
 
    ucTemp = ReadRawRC ( ucReg );
	
    WriteRawRC ( ucReg, ucTemp & ( ~ ucMask) );  // clear bit mask
	
	
}
 
 
/* * 函数名:PcdAntennaOn * 描述 :开启天线 * 输入 :无 * 返回 : 无 * 调用 :内部调用 */
void PcdAntennaOn ( void )
{ 
   
    u8 uc;
 
    uc = ReadRawRC ( TxControlReg );
	
    if ( ! ( uc & 0x03 ) )
			SetBitMask(TxControlReg, 0x03);
	
}
 
 
/* * 函数名:PcdAntennaOff * 描述 :开启天线 * 输入 :无 * 返回 : 无 * 调用 :内部调用 */
void PcdAntennaOff ( void )
{ 
   
 
    ClearBitMask ( TxControlReg, 0x03 );
 
}
 
 
/* * 函数名:PcdRese * 描述 :复位RC522 * 输入 :无 * 返回 : 无 * 调用 :外部调用 */
void PcdReset ( void )
{ 
   
    RC522_Reset_Disable();
 
    delay_us ( 1 );
 
    RC522_Reset_Enable();
 
    delay_us ( 1 );
 
    RC522_Reset_Disable();
 
    delay_us ( 1 );
 
    WriteRawRC ( CommandReg, 0x0f );
 
    while ( ReadRawRC ( CommandReg ) & 0x10 );
 
    delay_us ( 1 );
 
    WriteRawRC ( ModeReg, 0x3D );            //定义发送和接收常用模式 和Mifare卡通讯,CRC初始值0x6363
 
    WriteRawRC ( TReloadRegL, 30 );          //16位定时器低位 
    WriteRawRC ( TReloadRegH, 0 );			     //16位定时器高位
 
    WriteRawRC ( TModeReg, 0x8D );				   //定义内部定时器的设置
 
    WriteRawRC ( TPrescalerReg, 0x3E );			 //设置定时器分频系数
 
    WriteRawRC ( TxAutoReg, 0x40 );				   //调制发送信号为100%ASK 
	
 
}
 
 
/* * 函数名:M500PcdConfigISOType * 描述 :设置RC522的工作方式 * 输入 :ucType,工作方式 * 返回 : 无 * 调用 :外部调用 */
void M500PcdConfigISOType ( u8 ucType )
{ 
   
	if ( ucType == 'A')                     //ISO14443_A
  { 
   
		ClearBitMask ( Status2Reg, 0x08 );
		
    WriteRawRC ( ModeReg, 0x3D );//3F
		
		WriteRawRC ( RxSelReg, 0x86 );//84
		
		WriteRawRC( RFCfgReg, 0x7F );   //4F
		
		WriteRawRC( TReloadRegL, 30 );//tmoLength);// TReloadVal = 'h6a =tmoLength(dec) 
		
		WriteRawRC ( TReloadRegH, 0 );
		
		WriteRawRC ( TModeReg, 0x8D );
		
		WriteRawRC ( TPrescalerReg, 0x3E );
		
		delay_us ( 2 );
		
		PcdAntennaOn ();//开天线
		
   }
 
}
 
 
/* * 函数名:PcdComMF522 * 描述 :通过RC522和ISO14443卡通讯 * 输入 :ucCommand,RC522命令字 * pInData,通过RC522发送到卡片的数据 * ucInLenByte,发送数据的字节长度 * pOutData,接收到的卡片返回数据 * pOutLenBit,返回数据的位长度 * 返回 : 状态值 * = MI_OK,成功 * 调用 :内部调用 */
char PcdComMF522 ( u8 ucCommand, u8 * pInData, u8 ucInLenByte, u8 * pOutData, u32 * pOutLenBit )		
{ 
   
    char cStatus = MI_ERR;
    u8 ucIrqEn   = 0x00;
    u8 ucWaitFor = 0x00;
    u8 ucLastBits;
    u8 ucN;
    u32 ul;
 
    switch ( ucCommand )
    { 
   
       case PCD_AUTHENT:		//Mifare认证
          ucIrqEn   = 0x12;		//允许错误中断请求ErrIEn 允许空闲中断IdleIEn
          ucWaitFor = 0x10;		//认证寻卡等待时候 查询空闲中断标志位
          break;
			 
       case PCD_TRANSCEIVE:		//接收发送 发送接收
          ucIrqEn   = 0x77;		//允许TxIEn RxIEn IdleIEn LoAlertIEn ErrIEn TimerIEn
          ucWaitFor = 0x30;		//寻卡等待时候 查询接收中断标志位与 空闲中断标志位
          break;
			 
       default:
         break;
			 
    }
   
    WriteRawRC ( ComIEnReg, ucIrqEn | 0x80 );		//IRqInv置位管脚IRQ与Status1Reg的IRq位的值相反 
    ClearBitMask ( ComIrqReg, 0x80 );			//Set1该位清零时,CommIRqReg的屏蔽位清零
    WriteRawRC ( CommandReg, PCD_IDLE );		//写空闲命令
    SetBitMask ( FIFOLevelReg, 0x80 );			//置位FlushBuffer清除内部FIFO的读和写指针以及ErrReg的BufferOvfl标志位被清除
    
    for ( ul = 0; ul < ucInLenByte; ul ++ )
		  WriteRawRC ( FIFODataReg, pInData [ ul ] );    		//写数据进FIFOdata
			
    WriteRawRC ( CommandReg, ucCommand );					//写命令
   
    
    if ( ucCommand == PCD_TRANSCEIVE )
			SetBitMask(BitFramingReg,0x80);  				//StartSend置位启动数据发送 该位与收发命令使用时才有效
    
    ul = 1000;//根据时钟频率调整,操作M1卡最大等待时间25ms
		
    do 														//认证 与寻卡等待时间 
    { 
   
         ucN = ReadRawRC ( ComIrqReg );							//查询事件中断
         ul --;
    } while ( ( ul != 0 ) && ( ! ( ucN & 0x01 ) ) && ( ! ( ucN & ucWaitFor ) ) );		//退出条件i=0,定时器中断,与写空闲命令
		
    ClearBitMask ( BitFramingReg, 0x80 );					//清理允许StartSend位
		
    if ( ul != 0 )
    { 
   
		if ( ! (( ReadRawRC ( ErrorReg ) & 0x1B )) )			//读错误标志寄存器BufferOfI CollErr ParityErr ProtocolErr
		{ 
   
			cStatus = MI_OK;
			
			if ( ucN & ucIrqEn & 0x01 )					//是否发生定时器中断
			  cStatus = MI_NOTAGERR;   
				
			if ( ucCommand == PCD_TRANSCEIVE )
			{ 
   
				ucN = ReadRawRC ( FIFOLevelReg );			//读FIFO中保存的字节数
				
				ucLastBits = ReadRawRC ( ControlReg ) & 0x07;	//最后接收到得字节的有效位数
				
				if ( ucLastBits )
					* pOutLenBit = ( ucN - 1 ) * 8 + ucLastBits;   	//N个字节数减去1(最后一个字节)+最后一位的位数 读取到的数据总位数
				else
					* pOutLenBit = ucN * 8;   					//最后接收到的字节整个字节有效
				
				if ( ucN == 0 )	
                    ucN = 1;    
				
				if ( ucN > MAXRLEN )
					ucN = MAXRLEN;   
				
				for ( ul = 0; ul < ucN; ul ++ )
				  pOutData [ ul ] = ReadRawRC ( FIFODataReg );   
			}		
        }
			else
				cStatus = MI_ERR;   
// printf(ErrorReg);
    }
   
   SetBitMask ( ControlReg, 0x80 );           // stop timer now
   WriteRawRC ( CommandReg, PCD_IDLE ); 
	
   return cStatus;
 
}
 
 
/* * 函数名:PcdRequest * 描述 :寻卡 * 输入 :ucReq_code,寻卡方式 * = 0x52,寻感应区内所有符合14443A标准的卡 * = 0x26,寻未进入休眠状态的卡 * pTagType,卡片类型代码 * = 0x4400,Mifare_UltraLight * = 0x0400,Mifare_One(S50) * = 0x0200,Mifare_One(S70) * = 0x0800,Mifare_Pro(X)) * = 0x4403,Mifare_DESFire * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdRequest ( u8 ucReq_code, u8 * pTagType )
{ 
   
    char cStatus;  
    u8 ucComMF522Buf [ MAXRLEN ]; 
    u32 ulLen;
 
    ClearBitMask ( Status2Reg, 0x08 );	//清理指示MIFARECyptol单元接通以及所有卡的数据通信被加密的情况
    WriteRawRC ( BitFramingReg, 0x07 );	// 发送的最后一个字节的 七位
    SetBitMask ( TxControlReg, 0x03 );	//TX1,TX2管脚的输出信号传递经发送调制的13.56的能量载波信号
 
    ucComMF522Buf [ 0 ] = ucReq_code;		//存入 卡片命令字
 
    cStatus = PcdComMF522 ( PCD_TRANSCEIVE,	ucComMF522Buf, 1, ucComMF522Buf, & ulLen );	//寻卡 
 
    if ( ( cStatus == MI_OK ) && ( ulLen == 0x10 ) )	//寻卡成功返回卡类型 
    { 
       
       * pTagType = ucComMF522Buf [ 0 ];
       * ( pTagType + 1 ) = ucComMF522Buf [ 1 ];
    }
     
    else
     cStatus = MI_ERR;
 
    return cStatus;
 
}
 
 
/* * 函数名:PcdAnticoll * 描述 :防冲撞 * 输入 :pSnr,卡片序列号,4字节 * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdAnticoll ( u8 * pSnr )
{ 
   
    char cStatus;
    u8 uc, ucSnr_check = 0;
    u8 ucComMF522Buf [ MAXRLEN ]; 
	u32 ulLen;
 
    ClearBitMask ( Status2Reg, 0x08 );		//清MFCryptol On位 只有成功执行MFAuthent命令后,该位才能置位
    WriteRawRC ( BitFramingReg, 0x00);		//清理寄存器 停止收发
    ClearBitMask ( CollReg, 0x80 );			//清ValuesAfterColl所有接收的位在冲突后被清除
   
    ucComMF522Buf [ 0 ] = 0x93;	//卡片防冲突命令
    ucComMF522Buf [ 1 ] = 0x20;
   
    cStatus = PcdComMF522 ( PCD_TRANSCEIVE, ucComMF522Buf, 2, ucComMF522Buf, & ulLen);//与卡片通信
	
    if ( cStatus == MI_OK)		//通信成功
    { 
   
		for ( uc = 0; uc < 4; uc ++ )
        { 
   
            * ( pSnr + uc )  = ucComMF522Buf [ uc ];			//读出UID
            ucSnr_check ^= ucComMF522Buf [ uc ];
        }
			
        if ( ucSnr_check != ucComMF522Buf [ uc ] )
        		cStatus = MI_ERR;    
				 
    }
    
    SetBitMask ( CollReg, 0x80 );
 
    return cStatus;
	
}
 
 
/* * 函数名:CalulateCRC * 描述 :用RC522计算CRC16 * 输入 :pIndata,计算CRC16的数组 * ucLen,计算CRC16的数组字节长度 * pOutData,存放计算结果存放的首地址 * 返回 : 无 * 调用 :内部调用 */
void CalulateCRC ( u8 * pIndata, u8 ucLen, u8 * pOutData )
{ 
   
    u8 uc, ucN;
 
    ClearBitMask(DivIrqReg,0x04);
	
    WriteRawRC(CommandReg,PCD_IDLE);
	
    SetBitMask(FIFOLevelReg,0x80);
	
    for ( uc = 0; uc < ucLen; uc ++)
	    WriteRawRC ( FIFODataReg, * ( pIndata + uc ) );   
 
    WriteRawRC ( CommandReg, PCD_CALCCRC );
	
    uc = 0xFF;
	
    do 
    { 
   
        ucN = ReadRawRC ( DivIrqReg );
        uc --;
    } while ( ( uc != 0 ) && ! ( ucN & 0x04 ) );
		
    pOutData [ 0 ] = ReadRawRC ( CRCResultRegL );
    pOutData [ 1 ] = ReadRawRC ( CRCResultRegM );
	
}
 
 
/* * 函数名:PcdSelect * 描述 :选定卡片 * 输入 :pSnr,卡片序列号,4字节 * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdSelect ( u8 * pSnr )
{ 
   
    char ucN;
    u8 uc;
	  u8 ucComMF522Buf [ MAXRLEN ]; 
    u32  ulLen;
 
    ucComMF522Buf [ 0 ] = PICC_ANTICOLL1;
    ucComMF522Buf [ 1 ] = 0x70;
    ucComMF522Buf [ 6 ] = 0;
	
    for ( uc = 0; uc < 4; uc ++ )
    { 
   
    	ucComMF522Buf [ uc + 2 ] = * ( pSnr + uc );
    	ucComMF522Buf [ 6 ] ^= * ( pSnr + uc );
    }
		
    CalulateCRC ( ucComMF522Buf, 7, & ucComMF522Buf [ 7 ] );
  
    ClearBitMask ( Status2Reg, 0x08 );
 
    ucN = PcdComMF522 ( PCD_TRANSCEIVE, ucComMF522Buf, 9, ucComMF522Buf, & ulLen );
    
    if ( ( ucN == MI_OK ) && ( ulLen == 0x18 ) )
      ucN = MI_OK;  
    else
      ucN = MI_ERR;    
 
    return ucN;
	
}
 
 
/* * 函数名:PcdAuthState * 描述 :验证卡片密码 * 输入 :ucAuth_mode,密码验证模式 * = 0x60,验证A密钥 * = 0x61,验证B密钥 * u8 ucAddr,块地址 * pKey,密码 * pSnr,卡片序列号,4字节 * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdAuthState ( u8 ucAuth_mode, u8 ucAddr, u8 * pKey, u8 * pSnr )
{ 
   
    char cStatus;
	  u8 uc, ucComMF522Buf [ MAXRLEN ];
    u32 ulLen;
 
    ucComMF522Buf [ 0 ] = ucAuth_mode;
    ucComMF522Buf [ 1 ] = ucAddr;
	
    for ( uc = 0; uc < 6; uc ++ )
	    ucComMF522Buf [ uc + 2 ] = * ( pKey + uc );   
	
    for ( uc = 0; uc < 6; uc ++ )
	    ucComMF522Buf [ uc + 8 ] = * ( pSnr + uc );   
 
    cStatus = PcdComMF522 ( PCD_AUTHENT, ucComMF522Buf, 12, ucComMF522Buf, & ulLen );
	
    if ( ( cStatus != MI_OK ) || ( ! ( ReadRawRC ( Status2Reg ) & 0x08 ) ) )
			
		{ 
   
// if(cStatus != MI_OK)
// printf("666") ; 
// else
// printf("888");
			cStatus = MI_ERR; 
    }
		
    return cStatus;
		
}
 
 
/* * 函数名:PcdWrite * 描述 :写数据到M1卡一块 * 输入 :u8 ucAddr,块地址 * pData,写入的数据,16字节 * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdWrite ( u8 ucAddr, u8 * pData )
{ 
   
    char cStatus;
	  u8 uc, ucComMF522Buf [ MAXRLEN ];
    u32 ulLen;
 
    ucComMF522Buf [ 0 ] = PICC_WRITE;
    ucComMF522Buf [ 1 ] = ucAddr;
	
    CalulateCRC ( ucComMF522Buf, 2, & ucComMF522Buf [ 2 ] );
 
    cStatus = PcdComMF522 ( PCD_TRANSCEIVE, ucComMF522Buf, 4, ucComMF522Buf, & ulLen );
 
    if ( ( cStatus != MI_OK ) || ( ulLen != 4 ) || ( ( ucComMF522Buf [ 0 ] & 0x0F ) != 0x0A ) )
      cStatus = MI_ERR;   
        
    if ( cStatus == MI_OK )
    { 
   
			memcpy(ucComMF522Buf, pData, 16);
      for ( uc = 0; uc < 16; uc ++ )
			  ucComMF522Buf [ uc ] = * ( pData + uc );  
			
      CalulateCRC ( ucComMF522Buf, 16, & ucComMF522Buf [ 16 ] );
 
      cStatus = PcdComMF522 ( PCD_TRANSCEIVE, ucComMF522Buf, 18, ucComMF522Buf, & ulLen );
			
			if ( ( cStatus != MI_OK ) || ( ulLen != 4 ) || ( ( ucComMF522Buf [ 0 ] & 0x0F ) != 0x0A ) )
        cStatus = MI_ERR;   
			
    } 
 
    return cStatus;
	
}
 
 
/* * 函数名:PcdRead * 描述 :读取M1卡一块数据 * 输入 :u8 ucAddr,块地址 * pData,读出的数据,16字节 * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdRead ( u8 ucAddr, u8 * pData )
{ 
   
    char cStatus;
	  u8 uc, ucComMF522Buf [ MAXRLEN ]; 
    u32 ulLen;
 
    ucComMF522Buf [ 0 ] = PICC_READ;
    ucComMF522Buf [ 1 ] = ucAddr;
	
    CalulateCRC ( ucComMF522Buf, 2, & ucComMF522Buf [ 2 ] );
   
    cStatus = PcdComMF522 ( PCD_TRANSCEIVE, ucComMF522Buf, 4, ucComMF522Buf, & ulLen );
	
    if ( ( cStatus == MI_OK ) && ( ulLen == 0x90 ) )
    { 
   
			for ( uc = 0; uc < 16; uc ++ )
        * ( pData + uc ) = ucComMF522Buf [ uc ];   
    }
		
    else
      cStatus = MI_ERR;   
	
    return cStatus;
 
}
 
 
/* * 函数名:PcdHalt * 描述 :命令卡片进入休眠状态 * 输入 :无 * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdHalt( void )
{ 
   
    u8 ucComMF522Buf [ MAXRLEN ]; 
    u32  ulLen;
 
    ucComMF522Buf [ 0 ] = PICC_HALT;
    ucComMF522Buf [ 1 ] = 0;
 
    CalulateCRC ( ucComMF522Buf, 2, & ucComMF522Buf [ 2 ] );
    	PcdComMF522 ( PCD_TRANSCEIVE, ucComMF522Buf, 4, ucComMF522Buf, & ulLen );
 
    return MI_OK;
	
}
 
 
void IC_CMT ( u8 * UID, u8 * KEY, u8 RW, u8 * Dat )
{ 
   
    u8 ucArray_ID [ 4 ] = { 
    0 };//先后存放IC卡的类型和UID(IC卡序列号)
 
    PcdRequest ( 0x52, ucArray_ID );//寻卡
 
    PcdAnticoll ( ucArray_ID );//防冲撞
 
    PcdSelect ( UID );//选定卡
 
    PcdAuthState ( 0x60, 0x10, KEY, UID );//校验
 
    if ( RW )//读写选择,1是读,0是写
        PcdRead ( 0x10, Dat );
 
    else 
        PcdWrite ( 0x10, Dat );
     
    PcdHalt ();	 
	 
}
 
void ShowID(u8 *p)	 //显示卡的卡号,以十六进制显示
{ 
   
	u8 num[9];
	u8 i;
 
 	for(i=0;i<4;i++)
	{ 
   
		num[i*2]=p[i]/16;
		num[i*2]>9?(num[i*2]+='7'):(num[i*2]+='0');
		num[i*2+1]=p[i]%16;
		num[i*2+1]>9?(num[i*2+1]+='7'):(num[i*2+1]+='0');
	}
	num[8]=0;
	for(i =0;i<10;i++)
		{ 
   
		    SN[i] = num[i];
		}
		sprintf(ss,"%s",SN);
 		OLED_ShowString(0,0,"ID:",16); //oled显示
		OLED_ShowString(25,0,(u8*)ss,16); //oled显示 
		if(strcmp(SN,"F3355E0D") == 0)
		{ 
   
		    LED0 = 0;
			delay_ms(500);
			LED0=1;
		}
		else 
		{ 
   
		// OLED_ShowString(0,5,"error",16); //oled显示
		}
	

    printf("ID>>>%s\r\n", num);
 
}

main.c

#include "led.h"
#include "delay.h"
#include "key.h"
#include "sys.h"
#include "usart.h"
#include "rc522.h" 
#include "beep.h"
#include "oled.h"


u8 RC522_lock(void);//刷卡解锁
u8 cardid[6]={ 
   0,0,0,0,0,0};  //卡号1
//MFRC522数据区
u8  mfrc552pidbuf[18];
u8  card_pydebuf[2];
u8  card_numberbuf[5];
u8  card_key0Abuf[6]={ 
   0xff,0xff,0xff,0xff,0xff,0xff};
u8  card_writebuf[16]={ 
   0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
u8  card_readbuf[18];
 int main(void)
 { 
   		
	delay_init();	    	 //延时函数初始化 
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC中断分组2:2位抢占优先级,2位响应优先级
	uart_init(115200);	 //串口初始化为115200
 	LED_Init();			     //LED端口初始化
	KEY_Init();          //初始化与按键连接的硬件接口
	RC522_Init();				//初始化射频卡模块
// BEEP_Init(); //初始化蜂鸣器
	OLED_Init();		//初始化OLED
	OLED_Clear(); 		//清屏
	
	OLED_ShowCHinese(0,5,9); //刷
	OLED_ShowCHinese(15,5,2); //卡
	OLED_ShowCHinese(30,5,12); //显
	OLED_ShowCHinese(45,5,13); //示
 	while(1)
	{ 
   

		RC522_Handel();
	}	 
 }

  刷卡能够显示卡的ID号,如果ID号正确能够亮灯,请看具体的代码,下面是视频演示

RC522刷卡

7、备注:

  1. 本文章是个人总结,如有错误请指正;
  2. 部分资料来源于网络和开发手册,如有侵权请联系我删除;
  3. 如需上方资料,请与我联系。

8、工程代码链接:代码链接

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/159344.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(1)


相关推荐

  • ant安装过程

    ant安装过程ant是jakarta一个非常好的OpenSource子项目,是基于java的编译工具。下面简单介绍一下在linux环境中如何安装ant:1.下载  从 http://ant.apache.org/bindownload.cgi 可以下载最新的tar包:apache-ant-1.8.1-bin.tar.gz 2.安装,直接解压到当前下载目录即可>tarzxpvfapach

  • 从tracker上获取peer列表[通俗易懂]

    从tracker上获取peer列表[通俗易懂] 从torrent文件中得到了tracker列表后,接下来的工作就是获取peer列表.tracker使用http协议.客户端向服务器发送标准的GET请求,就可以得到这个列表.tracker返回的信息是bencode编码.向tracker发送的GET请求有如下一些参数:info_hash(必须):    torrent文件中info字段的sha1.torrent文件解析器中已经计算此值,保存在CTo

  • attributes.add的用法[通俗易懂]

    attributes.add的用法[通俗易懂]Attributes.Add(";如:this.TextBox1.Attributes.add("onblue","window.Label1.style.backgroundColor=’#000000′;");this.TextBox1.Attributes.Add("onblur","this.style.display=’none’");javascript事件:on…

  • 为什么国内很少人用树莓派(树莓派怎么玩)

    1.网站服务器在树莓派上搭建了一个博客网站,树莓派就放在家里,常年开机,使用内网穿透技术使得任何地方都可以访问我的博客,节省了服务器费用。虽然树莓派的性能比较差,但是当一个基本的服务器也足够了。树莓派安装lnmp套件搭建个人博客网站服务器|科技爱好者博客​www.lxx1.com2.做了一个广告屏蔽器用树莓派搭建了一个DNS服务器,主要用来屏蔽广告,效果非常不错,家里所有的上网设备都没有广…

  • security protected_license server detected什么意思

    security protected_license server detected什么意思http://3g.365jia.cn/js/riot.min.jshttp://a.adnium.com/static?r=23326206&id=94837&pid=5044&sid=73633&tid=1&w=300&h=250http://aaa.1688zl.top/static/bottom.jshttp://ca2.hnzz-zhuor…

  • item buffer_addlistener

    item buffer_addlistener当创建DataGrid控件中的项时(不论是在往返行程中还是在将数据绑定到控件时),都会引发ItemCreated事件。ItemCreated事件通常用于控制DataGrid控件中行的内容和外观。当项被数据绑定到DataGrid控件后,将引发ItemDataBound事件。此事件为您提供了在客户端显示数据项之前访问该数据项的最后机会。当引发此事件后,该数据项将被设为空,并且不再

    2022年10月13日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号