windows channel

windows channelBlockQueue.h#pragmaonce#include”Common.h”#include”Condition.h”templateclassBlockQueue{public: BlockQueue() :mutex_() ,notEmpty_(mutex_) { } voidput(constT&t) { MutexLo

大家好,又见面了,我是你们的朋友全栈君。

BlockQueue.h

#pragma once

#include "Common.h"
#include "Condition.h"

template<typename T>
class BlockQueue
{
public:
	BlockQueue()
		: mutex_()
		, notEmpty_(mutex_)
	{
	}

	void put(const T &t)
	{
		MutexLockGuard lock(mutex_);
		queue_.push_back(t);
		notEmpty_.notify();
	}

	T take()
	{
		MutexLockGuard lock(mutex_);
		while (queue_.empty()) {
			notEmpty_.wait();
		}
		assert(!queue_.empty());
		T front(queue_.front());
		queue_.pop_front();
		return front;
	}

	size_t size() const
	{
		MutexLockGuard lock(mutex_);
		return queue_.size(); 
	}

private:
	BlockQueue(const BlockQueue&);
	BlockQueue& operator=(const BlockQueue&);

private:
	mutable MutexLock mutex_;
	Condition notEmpty_;
	std::deque<T> queue_;
};

Buffer.h

#pragma once

#include "Common.h"

class Buffer;
typedef std::tr1::shared_ptr<Buffer> BufferPtr;

class Buffer
{
public:
  static const size_t kCheapPrepend = 8;
  static const size_t kInitialSize = 2048;

  Buffer()
	 : buffer_(kCheapPrepend + kInitialSize)
	 , readerIndex_(kCheapPrepend)
	 , writerIndex_(kCheapPrepend)
	{
		assert(readableBytes() == 0);
		assert(writableBytes() == kInitialSize);
		assert(prependableBytes() == kCheapPrepend);
	}

	void swap(Buffer &rhs)
	{
		buffer_.swap(rhs.buffer_);
		std::swap(readerIndex_, rhs.readerIndex_);
		std::swap(writerIndex_, rhs.writerIndex_);
	}

	size_t readableBytes() const
	{
		return writerIndex_ - readerIndex_; 
	}

	size_t writableBytes() const
	{
		return buffer_.size() - writerIndex_;
	}

	size_t prependableBytes() const
	{
		return readerIndex_;
	}

	const char *peek() const
	{
		return begin() + readerIndex_;
	}

	void retrieve(size_t len)
	{
		assert(len <= readableBytes());
		if ( len < readableBytes())
		{
			readerIndex_ += len;
		}
		else
		{
			retrieveAll();
		}
	}

	void retrieveUntil(const char *end)
	{
		assert(peek() <= end);
		assert(end <= beginWrite());
		retrieve(end - peek());
	}

	void retrieveInt32()
	{
		retrieve(sizeof(__int32));
	}

	void retrieveInt16()
	{
		retrieve(sizeof(__int16));
	}

	void retrieveInt8()
	{
		retrieve(sizeof(__int8));
	}

	void retrieveAll()
	{
		readerIndex_ = kCheapPrepend;
		writerIndex_ = kCheapPrepend;
	}

	std::string retrieveAllAsString()
	{
		return retrieveAsString(readableBytes());
	}

	std::string retrieveAsString(size_t len)
	{
		assert(len <= readableBytes());
		std::string result(peek(), len);
		retrieve(len);
		return result;
	}

	void append(const std::string &str)
	{
		append(str.c_str(), str.size());
	}

	void append(const char* data, size_t len)
	{
		ensureWritableBytes(len);
		std::copy(data, data+len, stdext::checked_array_iterator<char*>(beginWrite(), len));
		hasWritten(len);
	}

	void append(const void* data, size_t len)
	{
		append(static_cast<const char*>(data), len);
	}

	void ensureWritableBytes(size_t len)
	{
		if (writableBytes() < len)
		{
			makeSpace(len);
		}
		assert(writableBytes() >= len);
	}

	char* beginWrite()
	{
		return begin() + writerIndex_;
	}

	const char* beginWrite() const
	{
		return begin() + writerIndex_;
	}

	void hasWritten(size_t len)
	{
		writerIndex_ += len;
	}

	void appendInt32(__int32 x);
	void appendInt16(__int16 x);
	void appendInt8(__int8 x);
	__int32 readInt32();
	__int16 readInt16();
	__int8 readInt8();
	__int32 peekInt32() const;
	__int16 peekInt16() const;
	__int8 peekInt8() const;
	void prependInt32(__int32 x);
	void prependInt16(__int16 x);
	void prependInt8(__int8 x);

	bool Buffer::read(void* data, size_t len)
	{
		if (data && readableBytes() >= len)
		{
			memcpy(data, peek(), len);
			retrieve(len);
			return true;
		}
		return false;
	}

	void prepend(const void* data, size_t len)
	{
		assert(len <= prependableBytes());
		readerIndex_ -= len;
		const char *d = static_cast<const char*>(data);
		std::copy(d, d+len, stdext::checked_array_iterator<char*>(begin()+readerIndex_, len));
	}

	int readFd(void* fd, int *saveErrno);

private:
	char *begin()
	{
		return &*buffer_.begin();
	}

	const char* begin() const
	{
		return &*buffer_.begin();
	}

	void makeSpace(size_t len)
	{
		if (writableBytes() + prependableBytes() < len + kCheapPrepend)
		{
			buffer_.resize(writerIndex_ + len);
		}
		else
		{
			assert(kCheapPrepend < readerIndex_);
			size_t readable = readableBytes();
			std::copy(begin() + readerIndex_, begin() + writerIndex_,
				stdext::checked_array_iterator<char*>(begin() + kCheapPrepend, writerIndex_ - readerIndex_));
			readerIndex_ = kCheapPrepend;
			writerIndex_ = readerIndex_ + readable;
			assert(readable == readableBytes());
		}
	}

	Buffer(const Buffer&);
	const Buffer& operator=(const Buffer&);

private:
	std::vector<char> buffer_;
	size_t readerIndex_;
	size_t writerIndex_;
};

Channel.h

#pragma once

#include "Buffer.h"
#include "BlockQueue.h"

#define TCPCONN_SUCCESS							0
#define TCPCONN_ERROR_BASE						0x00100
#define TCPCONN_ERROR_SOCKET					TCPCONN_ERROR_BASE + 1
#define TCPCONN_ERROR_CONNECT					TCPCONN_ERROR_BASE + 2
#define TCPCONN_ERROR_SEND						TCPCONN_ERROR_BASE + 3
#define TCPCONN_ERROR_RECV						TCPCONN_ERROR_BASE + 4
#define TCPCONN_ERROR_WSAEVENTSELECT			TCPCONN_ERROR_BASE + 5
#define TCPCONN_ERROR_WSAENUMNETWORKEVENTS		TCPCONN_ERROR_BASE + 6
#define TCPCONN_ERROR_WSAWAITFORMULTIPLEEVENTS	TCPCONN_ERROR_BASE + 7


typedef std::tr1::function<void(Buffer&)> OnReadCallback;
typedef std::tr1::function<void(int)> OnErrorCallback;
typedef std::tr1::function<void()> OnCloseCallback;

class Connector;
class Thread;
template<typename T> class BlockQueue;
typedef std::tr1::shared_ptr<Connector> ConnectorPtr;

class Channel
{
public:
	Channel(ConnectorPtr connectorPtr);
	~Channel();

	void start();
	void stop();

	void send(const unsigned char *msg, size_t len);
	void send(const BufferPtr &msg);

	void setOnReadCallback(const OnReadCallback &cb) { onReadCallback_ = cb; }
	void setOnErrorCallback(const OnErrorCallback &cb) { onErrorCallback_ = cb; }
	void setOnCloseCallback(const OnCloseCallback &cb) { onCloseCallback_ = cb; }
	
private:
	Channel(const Channel&);
	Channel& operator=(const Channel&);

	void sendBufferThread();
	void recvBufferThread();

private:
	ConnectorPtr connectorPtr_;
	scoped_ptr<Thread> recvBufferThread_;
	scoped_ptr<Thread> sendBufferThread_;
	scoped_ptr<BlockQueue<BufferPtr> > sendQueue_;
	Buffer recvBuffer_;

	OnReadCallback onReadCallback_;
	OnErrorCallback onErrorCallback_;
	OnCloseCallback onCloseCallback_;
};

Common.h

#pragma once

#include <assert.h>
#include <stdlib.h>
#include <cstddef>
#include <string.h>
#include <memory>
#include <functional>
#include <string>
#include <deque>
#include <algorithm>
#include <vector>
#include <map>
#include <iterator>
#include <WinSock2.h>
#include <Windows.h>
#include <iostream> // for test

namespace internal {

//  This is an implementation designed to match the anticipated future TR2
//  implementation of the scoped_ptr class, and its closely-related brethren,
//  scoped_array, scoped_ptr_malloc, and make_scoped_ptr.

template <class C> class scoped_ptr;
template <class C> class scoped_array;

// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
// automatically deletes the pointer it holds (if any).
// That is, scoped_ptr<T> owns the T object that it points to.
// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
//
// The size of a scoped_ptr is small:
// sizeof(scoped_ptr<C>) == sizeof(C*)
template <class C>
class scoped_ptr {
 public:

  // The element type
  typedef C element_type;

  // Constructor.  Defaults to intializing with NULL.
  // There is no way to create an uninitialized scoped_ptr.
  // The input parameter must be allocated with new.
  explicit scoped_ptr(C* p = NULL) : ptr_(p) { }

  // Destructor.  If there is a C object, delete it.
  // We don't need to test ptr_ == NULL because C++ does that for us.
  ~scoped_ptr() {
    enum { type_must_be_complete = sizeof(C) };
    delete ptr_;
  }

  // Reset.  Deletes the current owned object, if any.
  // Then takes ownership of a new object, if given.
  // this->reset(this->get()) works.
  void reset(C* p = NULL) {
    if (p != ptr_) {
      enum { type_must_be_complete = sizeof(C) };
      delete ptr_;
      ptr_ = p;
    }
  }

  // Accessors to get the owned object.
  // operator* and operator-> will assert() if there is no current object.
  C& operator*() const {
    assert(ptr_ != NULL);
    return *ptr_;
  }
  C* operator->() const  {
    assert(ptr_ != NULL);
    return ptr_;
  }
  C* get() const { return ptr_; }

  // Comparison operators.
  // These return whether two scoped_ptr refer to the same object, not just to
  // two different but equal objects.
  bool operator==(C* p) const { return ptr_ == p; }
  bool operator!=(C* p) const { return ptr_ != p; }

  // Swap two scoped pointers.
  void swap(scoped_ptr& p2) {
    C* tmp = ptr_;
    ptr_ = p2.ptr_;
    p2.ptr_ = tmp;
  }

  // Release a pointer.
  // The return value is the current pointer held by this object.
  // If this object holds a NULL pointer, the return value is NULL.
  // After this operation, this object will hold a NULL pointer,
  // and will not own the object any more.
  C* release() {
    C* retVal = ptr_;
    ptr_ = NULL;
    return retVal;
  }

 private:
  C* ptr_;

  // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
  // make sense, and if C2 == C, it still doesn't make sense because you should
  // never have the same object owned by two different scoped_ptrs.
  template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
  template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;

  // Disallow evil constructors
  scoped_ptr(const scoped_ptr&);
  void operator=(const scoped_ptr&);
};

// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
// with new [] and the destructor deletes objects with delete [].
//
// As with scoped_ptr<C>, a scoped_array<C> either points to an object
// or is NULL.  A scoped_array<C> owns the object that it points to.
//
// Size: sizeof(scoped_array<C>) == sizeof(C*)
template <class C>
class scoped_array {
 public:

  // The element type
  typedef C element_type;

  // Constructor.  Defaults to intializing with NULL.
  // There is no way to create an uninitialized scoped_array.
  // The input parameter must be allocated with new [].
  explicit scoped_array(C* p = NULL) : array_(p) { }

  // Destructor.  If there is a C object, delete it.
  // We don't need to test ptr_ == NULL because C++ does that for us.
  ~scoped_array() {
    enum { type_must_be_complete = sizeof(C) };
    delete[] array_;
  }

  // Reset.  Deletes the current owned object, if any.
  // Then takes ownership of a new object, if given.
  // this->reset(this->get()) works.
  void reset(C* p = NULL) {
    if (p != array_) {
      enum { type_must_be_complete = sizeof(C) };
      delete[] array_;
      array_ = p;
    }
  }

  // Get one element of the current object.
  // Will assert() if there is no current object, or index i is negative.
  C& operator[](std::ptrdiff_t i) const {
    assert(i >= 0);
    assert(array_ != NULL);
    return array_[i];
  }

  // Get a pointer to the zeroth element of the current object.
  // If there is no current object, return NULL.
  C* get() const {
    return array_;
  }

  // Comparison operators.
  // These return whether two scoped_array refer to the same object, not just to
  // two different but equal objects.
  bool operator==(C* p) const { return array_ == p; }
  bool operator!=(C* p) const { return array_ != p; }

  // Swap two scoped arrays.
  void swap(scoped_array& p2) {
    C* tmp = array_;
    array_ = p2.array_;
    p2.array_ = tmp;
  }

  // Release an array.
  // The return value is the current pointer held by this object.
  // If this object holds a NULL pointer, the return value is NULL.
  // After this operation, this object will hold a NULL pointer,
  // and will not own the object any more.
  C* release() {
    C* retVal = array_;
    array_ = NULL;
    return retVal;
  }

 private:
  C* array_;

  // Forbid comparison of different scoped_array types.
  template <class C2> bool operator==(scoped_array<C2> const& p2) const;
  template <class C2> bool operator!=(scoped_array<C2> const& p2) const;

  // Disallow evil constructors
  scoped_array(const scoped_array&);
  void operator=(const scoped_array&);
};

}  // namespace internal

// We made these internal so that they would show up as such in the docs,
// but we don't want to stick "internal::" in front of them everywhere.
using internal::scoped_ptr;
using internal::scoped_array;

Condition.h

#pragma once

#include "MutexLock.h"

class Condition
{
public:
	explicit Condition(MutexLock &mutex)
		: mutex_(mutex)
	{
		InitializeConditionVariable(&cond_);
	}

	void wait()
	{
		SleepConditionVariableCS(&cond_, &mutex_.cs(), INFINITE);
	}

	void notify()
	{
		WakeConditionVariable(&cond_);
	}

private:
	Condition(const Condition&);
	Condition& operator=(const Condition&);

private:
	MutexLock &mutex_;
	CONDITION_VARIABLE cond_;
};

Connector.h

#pragma once

#include "Common.h"

class Connector
{
public:
	typedef std::tr1::function<void(SOCKET fd)> ConnectionCallback;

	Connector(const std::string &ip, unsigned short port);
	virtual ~Connector(void);
	
	virtual void start();
	virtual void stop();

	void setConnectionCallback(const ConnectionCallback &func) { func_ = func; }
	SOCKET socket() const { return sock_; }
	bool connected() const { return connected_; }

private:
	void connect();

private:
	std::string ip_;
	unsigned short port_;
	ConnectionCallback func_;
	SOCKET sock_;
	bool connected_;
};

MutexLock.h

#pragma once

#include <WinBase.h>

class MutexLock
{
public:
	MutexLock()
	{
		InitializeCriticalSection(&criticalSection_);
	}

	~MutexLock()
	{
		DeleteCriticalSection(&criticalSection_);
	}

	void lock()
	{
		EnterCriticalSection(&criticalSection_);
	}

	void unlock()
	{
		LeaveCriticalSection(&criticalSection_);
	}

	CRITICAL_SECTION& cs()
	{
		return criticalSection_;
	}

private:
	MutexLock(const MutexLock&);
	MutexLock& operator=(const MutexLock&);

	CRITICAL_SECTION criticalSection_;
};

class MutexLockGuard
{
public:
	explicit MutexLockGuard(MutexLock &mutex)
		: mutex_(mutex)
	{
		mutex_.lock();
	}

	~MutexLockGuard()
	{
		mutex_.unlock();
	}

private:
	MutexLockGuard(const MutexLockGuard&);
	MutexLockGuard operator=(const MutexLockGuard&);

	MutexLock& mutex_;
};

Thread.h

#pragma once

#include "Common.h"

class Thread
{
public:
	typedef std::tr1::function<void()> ThreadFunc;

	explicit Thread(const ThreadFunc&, const std::string &name=std::string());
	~Thread();

	void start();
	int join();
	bool started() const { return started_; }
	HANDLE handle() const { return handle_; }
	unsigned int tid() const { return tid_; }
	const std::string& name() const { return name_; }

private:
	static unsigned int WINAPI startThread(void *data);
	void runInThread();

private:
	HANDLE handle_;
	unsigned int tid_;
	bool started_;
	ThreadFunc func_;
	std::string name_;
};

WSAStartup.h

#pragma once

class WsaStartup
{
public:
	WsaStartup(unsigned char majorVer, unsigned char minorVer);
	virtual ~WsaStartup(void);
};

Buffer.cpp

#include "Buffer.h"
#include <WinSock2.h>

void Buffer::appendInt32(__int32 x)
{
	__int32 be32 = htonl(x);
	append(&be32, sizeof(be32));
}

void Buffer::appendInt16(__int16 x)
{
	__int16 be16 = htons(x);
	append(&be16, sizeof(be16));
}

void Buffer::appendInt8(__int8 x)
{
	append(&x, sizeof(x));
}

__int32 Buffer::readInt32()
{
	__int32 result = peekInt32();
	retrieveInt32();
	return result;
}

__int16 Buffer::readInt16()
{
	__int16 result = peekInt16();
	retrieveInt16();
	return result;
}

__int8 Buffer::readInt8()
{
	__int8 result = peekInt8();
	retrieveInt8();
	return result;
}

__int32 Buffer::peekInt32() const
{
	assert(readableBytes() >= sizeof(__int32));
	__int32 be32 = 0;
	::memcpy(&be32, peek(), sizeof(be32));
	return ntohl(be32);
}

__int16 Buffer::peekInt16() const
{
	assert(readableBytes() >= sizeof(__int16));
	__int16 be16 = 0;
	::memcpy(&be16, peek(), sizeof(be16));
	return htons(be16);
}

__int8 Buffer::peekInt8() const
{
	assert(readableBytes() >= sizeof(__int8));
	__int8 x = *peek();
	return x;
}

void Buffer::prependInt32(__int32 x)
{
	__int32 be32 = htonl(x);
	prepend(&be32, sizeof(be32));
}

void Buffer::prependInt16(__int16 x)
{
	__int16 be16 = htons(x);
	prepend(&be16, sizeof(be16));
}

void Buffer::prependInt8(__int8 x)
{
	prepend(&x, sizeof(x));
}

int Buffer::readFd(void* fd, int *saveErrno)
{
	SOCKET sock = (SOCKET)fd;
	int writable = writableBytes();
	int n = ::recv(sock, begin() + writerIndex_, writable, 0);
	if (SOCKET_ERROR == n)
	{
		*saveErrno = WSAGetLastError();
	}
	else if (n <= writable)
	{
		writerIndex_ += n;
	}
	
	return n;
}

Channel.cpp

#include "Channel.h"
#include "Thread.h"
#include "Connector.h"

Channel::Channel(ConnectorPtr connectorPtr)
	: connectorPtr_(connectorPtr)
	, sendQueue_(new BlockQueue<BufferPtr>())
{
	recvBufferThread_.reset(new Thread(std::tr1::bind(&Channel::recvBufferThread, this), "eventHandleThread"));
	sendBufferThread_.reset(new Thread(std::tr1::bind(&Channel::sendBufferThread, this), "sendBufferThread"));
}

Channel::~Channel(void)
{
}

void Channel::start()
{
	connectorPtr_->start();
	recvBufferThread_->start();
	sendBufferThread_->start();
}

void Channel::stop()
{
	connectorPtr_->stop();
	BufferPtr lastBufferPtr(new Buffer());
	sendQueue_->put(lastBufferPtr);

	recvBufferThread_->join();
	sendBufferThread_->join();

	sendQueue_.reset(new BlockQueue<BufferPtr>());
}

void Channel::send(const unsigned char *msg, size_t len)
{
	BufferPtr bufferPtr(new Buffer());
	bufferPtr->append(msg, len);
	sendQueue_->put(bufferPtr);
}

void Channel::send(const BufferPtr &msg)
{
	sendQueue_->put(msg);
}

void Channel::sendBufferThread()
{
	std::cout << "recvBufferThread" << std::endl;
	while (connectorPtr_->connected()) {
		BufferPtr bufferPtr = sendQueue_->take();
		if (!connectorPtr_->connected()) {
			break;
		}

		unsigned int left = bufferPtr->readableBytes();
		while (left > 0) {
			int sendNum = ::send(connectorPtr_->socket(), bufferPtr->peek(), left, 0);
			if (SOCKET_ERROR == sendNum) {
				onErrorCallback_(TCPCONN_ERROR_SEND);
				break;
			}
			left -= sendNum;
			bufferPtr->retrieve(sendNum);
		}
	}

	std::cout << "recvBufferThread exit" << std::endl;
}

void Channel::recvBufferThread()
{
	std::cout << "sendBufferThread" << std::endl;
	while (connectorPtr_->connected()) {
		static const int bufferLen = 65535;;
		char buffer[bufferLen];
		int recvNum = ::recv(connectorPtr_->socket(), buffer, bufferLen, 0);
		if (recvNum > 0) {
			recvBuffer_.append(buffer, recvNum);
			onReadCallback_(recvBuffer_);
		} else if (0 == recvNum) {
			onCloseCallback_();
			break;
		} else {
			onErrorCallback_(TCPCONN_ERROR_RECV);
			break;
		}
	}

	std::cout << "sendBufferThread exit" << std::endl;
}

Connector.cpp

#include "Connector.h"
#include <Windows.h>

Connector::Connector(const std::string &ip, unsigned short port)
	: ip_(ip)
	, port_(port)
	, func_(NULL)
	, sock_(INVALID_SOCKET)
	, connected_(false)
{
}

Connector::~Connector(void)
{
	stop();
}

void Connector::start()
{
	connect();
}

void Connector::stop()
{
	connected_ = false;
	if (INVALID_SOCKET != sock_) {
		::shutdown(sock_, 2); // FIXME
		::closesocket(sock_);
		sock_ = INVALID_SOCKET;
	}
}

void Connector::connect()
{
	sockaddr_in sin;
	memset(&sin, 0, sizeof(sin));
	sin.sin_family = AF_INET;
	sin.sin_addr.s_addr = inet_addr(ip_.c_str());
	sin.sin_port = htons(port_);
	sock_ = ::socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
	if (INVALID_SOCKET != sock_) {
		if (0 == ::connect(sock_, (SOCKADDR*)&sin, sizeof(sin))) {
			connected_ = true;
		} else {
			::closesocket(sock_);
			sock_ = INVALID_SOCKET;
		}
	}
}

Thread.cpp

#include "Thread.h"
#include <process.h>
#include <assert.h>

Thread::Thread(const ThreadFunc &func, const std::string &name)
	: handle_(NULL)
	, tid_(0)
	, started_(false)
	, func_(func)
	, name_(name)
{
}

Thread::~Thread()
{
	CloseHandle(handle_);
}

void Thread::start()
{
	started_ = true;
	handle_ = (HANDLE)_beginthreadex(NULL, 0, startThread, this, 0, &tid_);
	assert(handle_ > 0);
}

int Thread::join()
{
	if (GetCurrentThreadId() == tid_) {
		return 0;
	}
	return WaitForSingleObject(handle_, INFINITE);
}

unsigned int Thread::startThread(void *data)
{
	Thread *thread = static_cast<Thread*>(data);
	thread->runInThread();
	return 0;
}

void Thread::runInThread()
{
	assert(GetCurrentThreadId() == tid_);
	if (func_) {
		func_();
	}
	started_ = false;
}

WsaStartup.cpp

#include "WsaStartup.h"
#include <Windows.h>
#include <crtdbg.h>

WsaStartup::WsaStartup(unsigned char majorVer, unsigned char minorVer)
{
	WSAData wsaData;
	_ASSERT(0 == WSAStartup(MAKEWORD(majorVer, minorVer), &wsaData));
}


WsaStartup::~WsaStartup(void)
{
	WSACleanup();
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/158351.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • eigen库安装vs_捷达vs5顶配啥配置

    eigen库安装vs_捷达vs5顶配啥配置(一)在官网下载所需版本的Eigen库,可查找历史版本Eigen(二)找到所需版本,下载压缩包,并解压(三)打开解压后的文件,复制路径D:\library\eigen-3.3.4(四)在vs的项目中点击“属性”——“C/C++”——“常规”——“附加包含目录”,添加路径D:\library\eigen-3.3.4(五)如果不想每次都添加路径的话,可以在属性管理器中添加属性表,然后在属性表的包含目录中添加路径D:\library\eigen-3.3.4,在其他项目需要使用Eigen库时,直接添加现有属性表即

  • Linux 下 Mariadb 配置用法

    Linux 下 Mariadb 配置用法

  • windows vim配置_配置vim

    windows vim配置_配置vimwin10设置vim配置文件进入vim安装目录(C:\Development\Vim\),后打开_vimrc文件在文件末添加需要设置的内容 setnu”设置行号 setnobackup”不保存备份文件 setnoundofile”不保存undo文件 setlines=35columns=140”设置窗口大小 (持续更新)…

  • json字符串转成list集合_将json字符串转换成对象

    json字符串转成list集合_将json字符串转换成对象一、List转换为json1、需要先添加System.Web.Extensions引用(微软自带)2、示例代码//定义一个测试listList<decimal[]>list=newList<decimal[]>();for(inti=0;i<5;i++){list.Add(newdecimal[]{100+i,i});}//把List集合转换为json字符串JavaScriptSerializerser

  • python删除首行_Python删除文件第一行

    python删除首行_Python删除文件第一行一、代码实例:defdel_firstline():forlineinfileinput.input(“file.txt”,inplace=1):ifnotfileinput.isfirstline():print(fileinput.replace(“\n”,””))二、使用的库:fileinputfileinput模块提供处理一个或多个文本文件的功能,可以通过使用for循环…

  • x390拆机图解_Thinkpadx390详细拆机图解

    x390拆机图解_Thinkpadx390详细拆机图解技术文档主体内容:可以认为是页面最想表达的内容总和。对于内容详情页来说,主体内容指从标题开始至正文内容结束,翻页区域也被视为主体内容,文章后的评论、分享、推荐等不视为主体内容。首屏:用户点击搜索结果后进入移动页面,不滑动屏幕即看到的所有内容,称为首屏。一屏:用户滑动屏幕至主体内容展现结束之前,在页面任意位置停留时看到的所有内容,称为一屏。移动端适配:为了使PC页面能够在移动端正常展现的手段,保证用…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号