Boltzmann机详解

Boltzmann机详解基于热力学的随机型神经网络–Boltzmann机1.模拟退火算法我们知道,Hopfield神经网络拥有联想记忆的能力,这也是对生物神经网络的一种模拟。但是,Hopfield神经网络也和BP神经网络一样,有一个致命的缺陷:只能找到局部最优解,而无法沿着梯度上升的方向在全局的角度寻求全局最优解。为了解决这个问题,1983年,Kirkpatrick等提出了模拟退火算法(SA)能有效的解决局部最优…

大家好,又见面了,我是你们的朋友全栈君。

基于热力学的随机型神经网络–Boltzmann机

1. 模拟退火算法

我们知道,Hopfield神经网络拥有联想记忆的能力,这也是对生物神经网络的一种模拟。但是,Hopfield神经网络也和BP神经网络一样,有一个致命的缺陷:只能找到局部最优解,而无法沿着梯度上升的方向在全局的角度寻求全局最优解。
为了解决这个问题,1983年,Kirkpatrick等提出了模拟退火算法(SA)能有效的解决局部最优解问题。‘退火’是物理学术语,指对物体加温在冷却的过程。模拟退火算法来源于晶体冷却的过程,如果固体不处于最低能量状态,给固体加热再冷却,随着温度缓慢下降,固体中的原子按照一定形状排列,形成高密度、低能量的有规则晶体,对应于算法中的全局最优解。模拟退火算法包含两个部分即Metropolis算法和退火过程。Metropolis算法就是如何在局部最优解的情况下让其跳出来,是退火的基础。1953年Metropolis提出重要性采样方法,即以概率来接受新状态,而不是使用完全确定的规则,称为Metropolis准则,计算量较低。

在这里插入图片描述

如上图所示,为模拟退火算法的示意图,在梯度下降法中,算法只有“下坡”的能力,没有“爬坡”的能力。而模拟退火算法不仅具有“下坡”能力,还赋予其爬坡能力。

2. 玻尔兹曼分布

在热力学中,对于一个封闭的系统,温度越高,混乱程度就越高,当温度降低时,系统逐渐趋于热力学平衡状态。对应神经网络的最优解。

将模拟退火算法和玻尔兹曼分布同Hopfield神经网络结合起来,就可以得到一种基于概率的神经网络模型–Boltzmann机,其有以下特点:

  • 初始温度可以设置得较高,使其拥有足够的“爬坡”能力;
  • 在迭代的过程中,温度逐渐降低,知道最终趋于最小温度(即网络达到平衡状态)
  • 在迭代降低温度时,降低的速率应该足够慢,可以采用线性更替:T(n+1)=ηT(n),0.8<η<0.99。

在这里插入图片描述

3. Boltzmann机

3.1 Boltzmann机的结构

BM网络的拓扑结构比较特殊,介于DHNN网的全互连结构与BP网的层次结构之间。从形式上看,BM网络与单层反馈网络DHNN网相似,具有对称权值,即,且=0。但从神经元的功能上看,BM网络与三层BP网相似,具 有输人节点、隐节点和输节点称为可见节点,而将隐节点称为不可见节点。训练时输人输出节点接收训练集样本,而隐节点主要起辅助作用,用来实现输人与输出之间的联系,使训练集能在可见单元再现。BM网络的三类节点之间没有明显的层次,连接形式可用上图的有向图表示。

在这里插入图片描述

同Hopfield神经网络有所不同,Boltzmann机的节点分为可见节点与隐节点,这说明Boltzmann机的结构介于Hopfield神经网络和BP神经网络之间。它又分为两种类型:

  • 自联想型BM:输入节点与输出节点公用
  • 异联想型BM:可见节点分为输入节点和输出节点

无论哪种类型的BM,都有一个共同的特点:所有的节点全连接,整个网络构成一个无向图。

3.2 Boltzmann机的训练过程

通过有导师学习,BM网络可以对训练集中各模式的概率分布进行模拟,从而实现联想记忆.学习的目的是通过调整网络权值使训练集中的模式在网络状态中以相同的概率再现.学习过程可分为两个阶段;第一阶段称为正向学习阶段或输入期,即向网络输入一对输人输出模式,将网络输人输出节点的状态“钳制”到期望的状态,而让隐节点自由活动,以捕捉模式对之间的对应规律;第二阶段称为反向学习阶段或自由运行期,对于异联想学习,用输人模式“钳住”输人节点而让隐节点和输出节点自由活动,对于自联想学习,让可见节点和隐节点都自由活动,以体现网络对输人输出对应规律的模拟情况。输人输出的对应规律表现为网络达到热平衡时,相连节点状态同时为1的平均概率。期望对应规律与模拟对应规律之间的差别就表现为两个学习阶段所对应的平均概率的差值,此差值便作为权值调整的依据。设BM网络隐节点数为m,可见节点数为n,则可见节点可表达的状态X(对于异联想,X中部分分量代表输人模式,另一部分代表输出模式)共有2”种。设训练集提供了P对模式,一般有P<n,训练集用一组概率分布表示各模式对出现的概率:

  1. 网络热平衡状态

为了统计以上的概率,需要反复使BM网络按模拟退火算法运行并达到热平衡状态,具体如下:

1.1 在正向学习阶段,用一对训练模式钳住网络的可见节点;在反向学习阶段,用训练模式中的输入部分钳住可见节点中的输入节点。  
1.2 随机选择自由活动节点j,使其更新状态为  
1.3 计算节点j状态更新而引起的网络能量变化       
1.4 若则接受状态更新;当时接受新状态,否则维持原状态。是预先设置的数值,在模拟退火过程中,温度T随时间逐渐降低,根据(3)式的讨论情况a看 ,对于常数,为使 ,必须使即在训练中不断减小,因此网络的爬山能力也是减小的。  
1.5 所有自由节点全部选择一遍  
1.6 按事先选定的降温方式降温,退火算法的降温规律没有统一的定论,一般要求初始温度足够高,降温速度充分慢,以保证网络收敛到全局最小,我们在模拟退火算法中给出了两个,现在拿出来:  
1.7 返回步骤②~⑥直到对所有自由节点均有,此时认为网络已经达到热平衡状态,此状态可供学习算法中统计任意两个节点同时为1的概率使用。    
  1. 权值调整算法与步骤
    2.1 随机设定网络的初始权值
    2.2 正向学习阶段按已知概率向网络输入学习模式。在的约束下按上述模拟退火算法运行网络到热平衡状态,统计该状态下网络中任意两个节点i与j同时为1的概率.
    2.3 反向学习阶段在无约束条件下或者在仅输入节点有约束条件下的运行网络到热平衡状态,统计该状态下网络中任意两节点i与j同时为1的概率.
    2.4 权值调整算法为:
    2.5 重复以上的步骤直到与充分接近

总结

Boltzmann机是将模拟退火算法和玻尔兹曼分布结合到传统神经网络中构成的一种随机型神经网络模型。它基本解决了由梯度下降法带来的局部最优问题。但是,它也有很大的缺陷:由上述训练过程可以知道,Boltzmann机训练过程时分漫长,所以它在实际中运用的并不多。这促使着大家开始解决由这种Boltzmann机带来的问题,后来就提出了受限Bolzmman机模型。详见受限Boltamann机详解一文

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/158102.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 推荐几个免费看动漫的网站

    推荐几个免费看动漫的网站相信很多喜欢看动漫的网友都有过想看番却找不到资源的经历,尤其是刚入宅的萌新,想看却又看不到的感觉很痛苦把,那么今天就给大家介绍几个好用的追番网站。1.bilibibilibili是国内知名的视频弹幕网站,这里有最及时的动漫新番,最棒的ACG氛围,最有创意的Up主。2.樱花动漫:种类很全,基本都没有圣光,很多人都喜欢用这个网站看番,非常nice3.bimibimi:M站4.zzzfuu:z站,种类很全:5.m.qixu8.cn一款手机端在线追番的网……

  • XXE漏洞学习[通俗易懂]

    XXE漏洞学习[通俗易懂]0x00什么是XML 1.定义XML用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。XML文档结构包括XML声明、DTD文档类型定义(可选)、文档元素。 2.文档结构XML文档结构包括XML声明、DTD文档类型…

  • HDU 1394 Minimum Inversion Number (数据结构-段树)

    HDU 1394 Minimum Inversion Number (数据结构-段树)

  • XPath解析中的 ‘Element a at 0x5308a80’是什么

    XPath解析中的 ‘Element a at 0x5308a80’是什么话不多说,直接上代码以链家网为例,解析网页打印出来的东西居然不是想象中的html文件,而是“<Elementhtmlat0x52e5c10>”这么个东西。这个东西其实是一个元素,后面会介绍到。现在还是说说怎么把这个东西变成我们能看懂的html内容吧。fromlxmlimportetreeimportrequestsfromlxml.htmlimport…

  • 使用awk数组进行求和[通俗易懂]

    使用awk数组进行求和[通俗易懂]使用awk求出三个人消费的累计金额

  • golang 2021激活码【2021免费激活】

    (golang 2021激活码)2021最新分享一个能用的的激活码出来,希望能帮到需要激活的朋友。目前这个是能用的,但是用的人多了之后也会失效,会不定时更新的,大家持续关注此网站~IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号