大家好,又见面了,我是你们的朋友全栈君。
摘自Tianyi Cui童鞋的《背包问题九讲》,稍作修改,方便理解。
本文包含的内容:
<1> 问题描述
<2> 基本思路(和完全背包类似)
<3> 转换为01背包问题求解(直接利用01背包)
———————————————
1、问题描述
已知:有一个容量为V的背包和N件物品,第i件物品最多有Num[i]件,每件物品的重量是weight[i],收益是cost[i]。
问题:在不超过背包容量的情况下,最多能获得多少价值或收益
举例:物品个数N = 3,背包容量为V = 8,则背包可以装下的最大价值为64.
———————————————-
2、基本思路(直接扩展01背包的方程)
由于本问题和完全背包很类似,这里直接给出方程。
状态转移方程:
f[i][v]:表示前i件物品放入重量为v的背包获得的最大收益
f[i][v] = max(f[i][v],f[i - 1][V - k * Weight[i]] + k * Value[i]);
其中0 <= k <= min(Num[i],V/Weight[i]);//这里和完全背包不同。
边界条件
f[i][0] = 0;
f[v][0] = 0;
代码:
#include <iostream>
using namespace std;
const int N = 3;//物品个数
const int V = 8;//背包容量
int Weight[N + 1] = {0,1,2,2};
int Value[N + 1] = {0,6,10,20};
int Num[N + 1] = {0,10,5,2};
int f[N + 1][V + 1] = {0};
/*
f[i][v]:表示把前i件物品放入容量为v的背包中获得的最大收益。
f[i][v] = max(f[i - 1][v],f[i - 1][v - k * Weight[i]] + K * Value[i]);其中1 <= k <= min(Num[i],V/Weight[i])
//初始化
f[i][0] = 0;
f[0][v] = 0;
*/
int MultiKnapsack()
{
int nCount = 0;
//初始化
for (int i = 0;i <= N;i++)
{
f[i][0] = 0;
}
for (int v = 0;v <= V;v++)
{
f[0][v] = 0;
}
//递推
for (int i = 1;i <= N;i++)
{
for (int v = Weight[i];v <= V;v++)
{
f[i][v] = 0;
nCount = min(Num[i],v/Weight[i]);//是当前背包容量v,而不是背包的总容量
for (int k = 0;k <= nCount;k++)
{
f[i][v] = max(f[i][v],f[i - 1][v - k * Weight[i]] + k * Value[i]);
}
}
}
return f[N][V];
}
int main()
{
cout<<MultiKnapsack()<<endl;
system("pause");
return 1;
}
复杂度分析:
程序需要求解N*V个状态,每一个状态需要的时间为O(v/Weight[i]),总的复杂度为O(NV*Σ(V/Weight[i]))。
3、转换为01背包问题求解(直接利用01背包)
思路 1、直接对每一件物品进行拆分成min(Num[i],V/Weight[i])件,之后在拆分后的集合上进行01背包的求解。
时间复杂度:和基本思路一样,没有降低。
思路 2、采用二进制拆分的思想。对每i件物品,拆分的策略为:新拆分的物品的重量等于1件,2件,4件,..,(2^(k – 1)),Num[i] – (2^(k – 1))件,其中k 是满足Num[i] – 2^k + 1 > 0 的最大整数。
注意,
(1)最后一个物品的件数的求法和前面不同,其直接等于 该物品的最大件数 – 前面已经分配之和。
(2)分成的这几件物品的系数和为Num[i],表明第i种物品取的件数不能多于Num[i]。
举例:某物品为13件,则其可以分成四件物品,其系数为1,2,4,6.这里k = 3。
当然,这里使用二进制的前提还是使用二进制拆分能保证对于0,,,Num[i]间的每一个整数,均可以用若干个系数的和表示。
具体使用时,有一个小优化,即:
我们不对所有的物品进行拆分,因此物品一旦拆分,其物品个数肯定增加,那么复杂度肯定上去。
此时,我们可以选择性地对物品进行拆分:
(1)如果第i个物品的重量Weight[i] * 物品的个数Num[i] >= 背包总重量V,可以不用拆分。
(2)如果第i个物品的重量Weight[i] * 物品的个数Num[i] < 背包总重量V,可以不用拆分。
其实,拆不拆分,就看该物品能不能满足完全背包的条件。即,看该物品能不能无限量供应。
解释:为啥满足Weight[i] * 物品的个数Num[i] >= 背包总重量V的物品可以不用拆分?
此时,满足该条件时,此物品原则上是无限供应,直到背包放不下为止。
最终,对于不需要拆分的物品,可以看出完全背包的情况,调用处理完全背包物品的函数。对于需要拆分的物品,可以看出01背包的情况,调用处理01背包物品的函数。
这样,由于不对满足完全背包的物品进行拆分,此时物品个数就没有对所有物品拆分时的物品个数多,即程序中外层循环降低,复杂度也就下去了。
伪代码:
这里:C表示该物品的重量。M表示该物品的个数。V表示背包的最大容量。W表示该物品的收益。
代码:
#include <iostream>
using namespace std;
const int N = 3;//物品个数
const int V = 8;//背包容量
int Weight[N + 1] = {0,1,2,2};
int Value[N + 1] = {0,6,10,20};
int Num[N + 1] = {0,10,5,2};
int f[V + 1] = {0};
/*
f[v]:表示把前i件物品放入容量为v的背包中获得的最大收益。
f[v] = max(f[v],f[v - Weight[i]] + Value[i]);
v的为逆序
*/
void ZeroOnePack(int nWeight,int nValue)
{
for (int v = V;v >= nWeight;v--)
{
f[v] = max(f[v],f[v - nWeight] + nValue);
}
}
/*
f[v]:表示把前i件物品放入容量为v的背包中获得的最大收益。
f[v] = max(f[v],f[v - Weight[i]] + Value[i]);
v的为增序
*/
void CompletePack(int nWeight,int nValue)
{
for (int v = nWeight;v <= V;v++)
{
f[v] = max(f[v],f[v - nWeight] + nValue);
}
}
int MultiKnapsack()
{
int k = 1;
int nCount = 0;
for (int i = 1;i <= N;i++)
{
if (Weight[i] * Num[i] >= V)
{
//完全背包:该类物品原则上是无限供应,
//此时满足条件Weight[i] * Num[i] >= V时,
//表示无限量供应,直到背包放不下为止.
CompletePack(Weight[i],Value[i]);
}
else
{
k = 1;
nCount = Num[i];
while(k <= nCount)
{
ZeroOnePack(k * Weight[i],k * Value[i]);
nCount -= k;
k *= 2;
}
ZeroOnePack(nCount * Weight[i],nCount * Value[i]);
}
}
return f[V];
}
int main()
{
cout<<MultiKnapsack()<<endl;
system("pause");
return 1;
}
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/157887.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...