大家好,又见面了,我是你们的朋友全栈君。
大家好,在之前我们讲过如何用Python构建一个带有GUI的爬虫小程序,很多本文将迎合热点,延续上次的NBA爬虫GUI,探讨如何爬取虎扑NBA官网数据。 并且将数据写入Excel中同时自动生成折线图,主要有以下几个步骤
本文将分为以下两个部分进行讲解
- 在虎扑NBA官网球员页面中进行爬虫,获取球员数据。
- 清洗整理爬取的球员数据,对其进行可视化。
项目主要涉及的Python模块:
- requests
- pandas
- bs4
很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:1156465813
爬虫部分
爬虫部分整理思路如下?
观察URL1的源代码找到球队名称与对应URL2观察URL2的源代码找到球员对应的URL3观察URL3源代码找到对应球员基本信息与比赛数据并进行筛选存储
其实爬虫就是在html上操作,而html的结构很简单就只有一个,就是一个大框讨一个小框,小框在套小框,这样的一层层嵌套。
目标URL如下:
- URL1:http://nba.hupu.com/players/
- URL2(此处以湖人球队为例):https://nba.hupu.com/players/lakers
- URL3(此处以詹姆斯为例):https://nba.hupu.com/players/lebronjames-650.html
先引用模块
from bs4 import BeautifulSoup import requests import xlsxwriter import os
查看URL1源代码代码,可以看到球队名词及其对应的URL2在span标签中<span class><a href = “…”>下,进而找到它的父框与祖父框,下面的思路都是如此,图如下:
此时,可以通过requests模块与bs4模块进行有目的性的索引,得到球队的名称列表。
def Teamlists(url): TeamName=[] TeamURL=[] GET=requests.get(URL1) soup=BeautifulSoup(GET.content,'lxml') lables=soup.select('html body div div div ul li span a') for lable in lables: ballname=lable.get_text() TeamName.append(ballname) print(ballname) teamname=input("请输入想查询的球队名:")#此处可变为GUI界面中的按键值 c=TeamName.index(teamname) for item in lables: HREF=item.get('href') TeamURL.append(HREF) URL2=TeamURL[c] return URL2
就此得到了对应球队的URL2,接着观察URL2网页的内容,可以看到球员名称在标签a中<a target = “_blank” href = ….>下,同时也存放着对应球员的URL3,如下图:
此时,故依然通过requests模块与bs4模块进行相对应的索引,得到球员名称列表以及对应的URL3。
#自定义函数获取队员列表和对应的URL def playerlists(URL2): PlayerName=[] PlayerURL=[] GET2=requests.get(URL1) soup2=BeautifulSoup(GET2.content,'lxml') lables2=soup2.select('html body div div table tbody tr td b a') for lable2 in lables2: playername=lable2.get_text() PlayerName.append(playername) print(playername) name=input("请输入球员名:") #此处可变为GUI界面中的按键值 d=PlayerName.index(name) for item2 in lables2: HREF2=item2.get('href') PlayerURL.append(HREF2) URL3=PlayerURL[d] return URL3,name
现在就此得到了对应球队的URL3,接着观察URL3网页的内容,可以看到球员基本信息在标签p下,球员常规赛生涯数据与季后赛生涯数据在标签td下,如下图:
同样,依然通过requests模块与bs4模块进行相对应的索引,得到球员基本信息与生涯数据,而对于球员的常规赛与季候赛的生涯数据将进行筛选与储存,得到data列表。
def Competition(URL3): data=[] GET3=requests.get(URL3) soup3=BeautifulSoup(GET3.content,'lxml') lables3=soup3.select('html body div div div div div div div div p') lables4=soup3.select('div div table tbody tr td') for lable3 in lables3: introduction=lable3.get_text() print(introduction) #球员基本信息 for lable4 in lables4: competition=lable4.get_text() data.append(competition) for i in range(len(data)): if data[i]=='职业生涯常规赛平均数据': a=data[i+31] a=data.index(a) del(data[:a]) for x in range(len(data)): if data[x]=='职业生涯季后赛平均数据': b=data[x] b=data.index(b) del(data[b:]) return data
通过上述网络爬虫得到了以下的数据,提供可视化数据的同时便于绑定之后的GUI界面按键事件:
- 获取NBA中的所有球队的标准名称;
- 通过指定的一只球队获取球队中所有球员的标准名称;
- 通过指定的球员获取到对应的基本信息以及常规赛与季后赛数据;
可视化部分
思路:创建文件夹 创建表格和折线图
自定义函数创建表格,运用os模块进行编写,返回已创文件夹的路径,代码如下:
def file_add(path): #此时的内函数path可与GUI界面的Statictext绑定 creatpath=path+'\\Basketball' try: if not os.path.isdir(creatpath): os.makedirs(creatpath) except: print("文件夹存在") return creatpath
运用xlsxwriter模块在creatpath路径下自定义函数创建excel表格同时放入数据与构造折线图,代码如下:
def player_chart(name,data,creatpath): #此为表格名称——球员名称+chart EXCEL=xlsxwriter.Workbook(creatpath+'\\'+name+'chart.xlsx') worksheet=EXCEL.add_worksheet(name) bold=EXCEL.add_format({'bold':1}) headings=data[:18] worksheet.write_row('A1',headings,bold) #写入表头 num=(len(data))//18 a=0 for i in range(num): a=a+18 c=a+18 i=i+1 worksheet.write_row('A'+str(i+1),data[a:c]) #写入数据 chart_col = EXCEL.add_chart({'type': 'line'}) #创建一个折线图 chart_col.add_series({ 'name': '='+name+'!$R$1', #设置折线描述名称 'categories':'='+name+'!$A$2:$A$'+str(num), #设置图表类别标签范围 'values': '='+name+'!$R$2:$R$'+str(num-1), #设置图表数据范围 'line': {'color': 'red'}, }) #设置图表线条属性 #设置图标的标题和想x,y轴信息 chart_col.set_title({'name': name+'生涯常规赛平均得分'}) chart_col.set_x_axis({'name': '年份 (年)'}) chart_col.set_y_axis({'name': '平均得分(分)'}) chart_col.set_style(1) #设置图表风格 worksheet.insert_chart('A14', chart_col, {'x_offset':25, 'y_offset':3,}) #把图标插入工作台中并设置偏移 EXCEL.close()
数据表格效果展现,以詹姆斯为例如下
并且此时打开自动生成的Excel,对应的折线图就直接展现出来,无需再次整理!
现在结合任务一的网络爬虫与任务二的数据可视化,可以得到实时的球员常规赛数据与季后赛数据汇总,同时还有实时球员生涯折线图。
注意:如果你是打算找python高薪工作的话。我建议你多写点真实的企业项目积累经验。不然工作都找不到,当然很多人没进过企业,怎么会存在项目经验呢? 所以你得多找找企业项目实战多练习下撒。如果你很懒不想找,也可以进我的Python交流圈:1156465813。群文件里面有我之前在做开发写过的一些真实企业项目案例。你可以拿去学习,不懂都可以在裙里找我,有空会耐心给你解答下。
以下内容无用,为本篇博客被搜索引擎抓取使用
(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)
python 是干什么的 零基础学 python 要多久 python 为什么叫爬虫
python 爬虫菜鸟教程 python 爬虫万能代码 python 爬虫怎么挣钱
python 基础教程 网络爬虫 python python 爬虫经典例子
python 爬虫
(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)(* ̄︶ ̄)
以上内容无用,为本篇博客被搜索引擎抓取使用
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/156014.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...