Python画图[通俗易懂]

Python画图[通俗易懂]帮别人实现rubberfriction的运算公式。公式不是我专业的内容,完全不懂,只是照着公式用python计算并画图。做出的图,与论文中的图进行对比,完全一致。之所以用python,是因为mat

大家好,又见面了,我是你们的朋友全栈君。

帮别人实现rubber friction的运算公式。公式不是我专业的内容,完全不懂,只是照着公式用python计算并画图。做出的图,与论文中的图进行对比,完全一致。

之所以用python,是因为matlab实在太大了。。。

python科学计算需要用到numpy和scipy,画图需要用到matplotlib。这三个模块的安装,windows下很容易,mac下稍微麻烦一些。

matplotlib需要注意的是,因为公式涉及的三个图,分别是对数-对数,对数-常数,常数-对数坐标,所以不能仅仅使用plot。

步骤一:

公式:Python画图[通俗易懂]

代码:

Python画图[通俗易懂]
Python画图[通俗易懂]
View Code

 1 def EOmega(E1,omega,tau,a1):
 2     a=complex(1,-omega*tau)
 3     b=complex(a1+1,-omega*tau)
 4     return E1*a/b
 5 
 6 def DrawEOmega(E1,tau,a1,xmin,xmax):
 7     re=[]
 8     im=[]
 9 
10     omega = np.logspace(xmin, xmax, 1000)
11     for o in omega:
12         re.append(EOmega(E1,o,tau,a1).real)
13         im.append(abs(EOmega(E1,o,tau,a1).imag))
14 
15     plt.figure()
16     plt.loglog(omega,re,label="$Re(E)$",color="red",linewidth=2)
17     plt.loglog(omega,im,"b--",label="$Im(E)$")
18     plt.ylim(10**0,10**10)
19     plt.xlabel("frequency omega[rad/s]")
20     plt.ylabel("E-modulus[Pa]")
21     plt.title("Complex E-modulus for rheological model")
22     plt.legend(loc="center right")
23     plt.show()
24 
25 
26 E1=10.0**9
27 a1=1000.0
28 tau=1.0/10**3
29 xmin=-2
30 xmax=8
31 DrawEOmega(E1,tau,a1,xmin,xmax)

图:

Python画图[通俗易懂]

 

步骤二:

公式:Python画图[通俗易懂](注:公式有些错误,G(q)的第二个积分没有Im)

代码:

Python画图[通俗易懂]
Python画图[通俗易懂]
View Code

 1 def EOmegaExpand(E1,tau,a1,q0,zeta,v,phi):
 2     omega=q0*zeta*v*np.cos(phi)
 3     return EOmega(E1,omega,tau,a1)
 4 
 5 def GQPartTwo(phi,E1,tau,a1,q0,zeta,v,gamma,sigma0):
 6     a=EOmegaExpand(E1,tau,a1,q0,zeta,v,phi)
 7     b=(1.0-gamma**2)*sigma0
 8     c=a/b
 9     re=c.real
10     im=c.imag
11     d=re**2+im**2
12     return d
13 
14 def GQPartOne(zeta,E1,tau,a1,q0,v,gamma,sigma0,H):
15     a=quad(GQPartTwo, 0, 2*np.pi,args=(E1,tau,a1,q0,zeta,v,gamma,sigma0))[0]
16     b=(zeta**(1.0-2*H))*a
17     return b
18 
19 def GQ(E1,tau,a1,q0,v,sigma0,gamma,H,h0,q):
20     a=quad(GQPartOne,1,q/q0,args=(E1,tau,a1,q0,v,gamma,sigma0,H))[0]
21     b=((q0*h0)**2)*H
22     c=a*b/(16*np.pi)
23     return c
24 
25 def PQ(E1,tau,a1,q0,sigma0,gamma,H,h0,v,zeta):
26     q=q0*zeta
27     a=GQ(E1,tau,a1,q0,v,sigma0,gamma,H,h0,q)
28     b=1/(2*np.sqrt(a))
29     c=erf(b)
30     return c
31 
32 def DrawPQ(E1,tau,a1,q0,sigma0,gamma,H,h0,xmin,xmax):
33     p1=[]
34     p2=[]
35     p3=[]
36     p4=[]
37     p5=[]
38 
39     v1=0.00005
40     v2=0.013
41     v3=0.316
42     v4=7.85
43     v5=187
44 
45     l = np.linspace(xmin, xmax, 50)
46     for o in l:
47         p1.append(PQ(E1,tau,a1,q0,sigma0,gamma,H,h0,v1,o))
48         p2.append(PQ(E1,tau,a1,q0,sigma0,gamma,H,h0,v2,o))
49         p3.append(PQ(E1,tau,a1,q0,sigma0,gamma,H,h0,v3,o))
50         p4.append(PQ(E1,tau,a1,q0,sigma0,gamma,H,h0,v4,o))
51         p5.append(PQ(E1,tau,a1,q0,sigma0,gamma,H,h0,v5,o))
52 
53     plt.figure()
54     plt.semilogy(l,p1,"b--",label="$v=0.00005m/s$",linewidth=5)
55     plt.semilogy(l,p2,label="$v=0.013m/s$",linewidth=5)
56     plt.semilogy(l,p3,"r--",label="$v=0.316m/s$",linewidth=1)
57     plt.semilogy(l,p4,"b--",label="$v=7.85m/s$",linewidth=1)
58     plt.semilogy(l,p5,label="$v=187m/s$",linewidth=1)
59     plt.xlabel("zeta[-]")
60     plt.ylabel("P[-]")
61     plt.title("Apparent contact area")
62     plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
63     plt.show()
64 
65 E1=10.0**9
66 a1=1000.0
67 tau=1.0/10**3
68 q0=2000.0
69 sigma0=0.2*(10**6)
70 gamma=0.5
71 H=0.85
72 h0=5.0/10**4
73 xmin=1
74 xmax=100
75 DrawPQ(E1,tau,a1,q0,sigma0,gamma,H,h0,xmin,xmax)

图:

Python画图[通俗易懂]

步骤三:

公式:Python画图[通俗易懂]

这一步的代码没有什么难度,只是注意一下坐标的问题即可。

 

目前还有一点问题,即第二张图中的图例不知道为什么总是无法显示完全,需要再查一下官方文档。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/155983.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • linux7 没有dpkg,Linux 系统操作 (7):dpkg 命令

    linux7 没有dpkg,Linux 系统操作 (7):dpkg 命令Linux系统操作(7):dpkg命令文章目录综述:安装命令:查看与搜索命令:删除命令:不太常用的命令:参考文献:综述:广义的Debian是指一个致力于创建自由操作系统的合作组织及其作品,由于Debian项目众多内核分支中以Linux宏内核为主,而且Debian开发者所创建的操作系统中绝大部分基础工具来自于GNU工程,因此”Debian”常指Debian…

  • java的同步方法和同步代码块,对象锁,类锁区别

    java的同步方法和同步代码块,对象锁,类锁区别

  • java浅拷贝和深拷贝的区别_python的浅拷贝和深拷贝

    java浅拷贝和深拷贝的区别_python的浅拷贝和深拷贝Java中的对象拷贝(ObjectCopy)指的是将一个对象的所有属性(成员变量)拷贝到另一个有着相同类类型的对象中去。举例说明:比如,对象A和对象B都属于类S,具有属性a和b。那么对对象A进行拷贝操作赋值给对象B就是:B.a=A.a;B.b=A.b;在程序中拷贝对象是很常见的,主要是为了在新的上下文环境中复用现有对象的部分或全部数据。Java中的对象拷贝主要分为:浅拷贝(ShallowCopy)、深拷贝(DeepCopy)。先介绍一点铺垫知识:Java中的数据类型分为基本数据类型和.

  • Cloudsim学习笔记——基本知识

    Cloudsim学习笔记——基本知识Cloudsim澳大利亚墨尔本学校的网格实验室和Gridbus项目推出,是在离散事件模拟包SimJava上开发的函数库,继承了GridSim的编程模型,特点:支持大型云计算的基础设施的建模和仿真; 一个自足的支持数据中心、服务代理人、调度和分配策略的平台独特功能:提供虚拟化引擎,旨在数据中心节点上帮助建立和管理多重的、独立的、协调的虚拟化服务; 在对虚拟化服务分配处理核心时能够在时…

    2022年10月13日
  • 小强(为什么叫打不死的小强)

    作为科研人员,经常需要下载文献。sci-hub大家应该都比较熟悉,我就不过多介绍了!自从11月20号,小伙伴们陆续反馈sci-hub无法访问了11月21日,sci-hub官方发布,通过修改dns为80.82.77.83和80.82.77.84可以访问sci-hub.cc(ac)不多说

  • navict+15+激活码 最新(注册激活)

    (navict+15+激活码 最新)最近有小伙伴私信我,问我这边有没有免费的intellijIdea的激活码,然后我将全栈君台教程分享给他了。激活成功之后他一直表示感谢,哈哈~https://javaforall.cn/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~S32P…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号