[Python]多线程详解

[Python]多线程详解最近在研究pythonthread的一些用法,有看到一篇关于thread的介绍文章,写的很好很详细,看完后转载收藏一下,供温故知新。谢谢作者大大转载于:python多线程详解(超详细)impo

大家好,又见面了,我是你们的朋友全栈君。

最近在研究python thread的一些用法,有看到一篇关于thread的介绍文章,写的很好很详细,看完后转载收藏一下,供温故知新。

谢谢作者大大
转载于:python多线程详解(超详细)

import threading
from threading import Lock,Thread
import time,os
'''
python多线程详解
什么是线程?
线程也叫轻量级进程,是操作系统能够进行运算调度的最小单位,它被包涵在进程之中,是进程中的实际运作单位。
线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其他线程共享进程所
拥有的全部资源。一个线程可以创建和撤销另一个线程,同一个进程中的多个线程之间可以并发执行
'''
'''
为什么要使用多线程?
线程在程序中是独立的、并发的执行流。与分隔的进程相比,进程中线程之间的隔离程度要小,它们共享内存、文件句柄
和其他进程应有的状态。
因为线程的划分尺度小于进程,使得多线程程序的并发性高。进程在执行过程之中拥有独立的内存单元,而多个线程共享
内存,从而极大的提升了程序的运行效率。
线程比进程具有更高的性能,这是由于同一个进程中的线程都有共性,多个线程共享一个进程的虚拟空间。线程的共享环境
包括进程代码段、进程的共有数据等,利用这些共享的数据,线程之间很容易实现通信。
操作系统在创建进程时,必须为改进程分配独立的内存空间,并分配大量的相关资源,但创建线程则简单得多。因此,使用多线程
来实现并发比使用多进程的性能高得要多。
'''
'''
总结起来,使用多线程编程具有如下几个优点:
进程之间不能共享内存,但线程之间共享内存非常容易。
操作系统在创建进程时,需要为该进程重新分配系统资源,但创建线程的代价则小得多。因此使用多线程来实现多任务并发执行比使用多进程的效率高
python语言内置了多线程功能支持,而不是单纯地作为底层操作系统的调度方式,从而简化了python的多线程编程。
'''
'''
普通创建方式
'''
# def run(n):
#     print('task',n)
#     time.sleep(1)
#     print('2s')
#     time.sleep(1)
#     print('1s')
#     time.sleep(1)
#     print('0s')
#     time.sleep(1)
#
# if __name__ == '__main__':
#     t1 = threading.Thread(target=run,args=('t1',))     # target是要执行的函数名(不是函数),args是函数对应的参数,以元组的形式存在
#     t2 = threading.Thread(target=run,args=('t2',))
#     t1.start()
#     t2.start()
'''
自定义线程:继承threading.Thread来定义线程类,其本质是重构Thread类中的run方法
'''
# class MyThread(threading.Thread):
#     def __init__(self,n):
#         super(MyThread,self).__init__()   #重构run函数必须写
#         self.n = n
#
#     def run(self):
#         print('task',self.n)
#         time.sleep(1)
#         print('2s')
#         time.sleep(1)
#         print('1s')
#         time.sleep(1)
#         print('0s')
#         time.sleep(1)
#
# if __name__ == '__main__':
#     t1 = MyThread('t1')
#     t2 = MyThread('t2')
#     t1.start()
#     t2.start()
'''
守护线程
下面这个例子,这里使用setDaemon(True)把所有的子线程都变成了主线程的守护线程,
因此当主线程结束后,子线程也会随之结束,所以当主线程结束后,整个程序就退出了。
所谓’线程守护’,就是主线程不管该线程的执行情况,只要是其他子线程结束且主线程执行完毕,主线程都会关闭。也就是说:主线程不等待该守护线程的执行完再去关闭。
'''
# def run(n):
#     print('task',n)
#     time.sleep(1)
#     print('3s')
#     time.sleep(1)
#     print('2s')
#     time.sleep(1)
#     print('1s')
#
# if __name__ == '__main__':
#     t=threading.Thread(target=run,args=('t1',))
#     t.setDaemon(True)
#     t.start()
#     print('end')
'''
通过执行结果可以看出,设置守护线程之后,当主线程结束时,子线程也将立即结束,不再执行
'''
'''
主线程等待子线程结束
为了让守护线程执行结束之后,主线程再结束,我们可以使用join方法,让主线程等待子线程执行
'''
# def run(n):
#     print('task',n)
#     time.sleep(2)
#     print('5s')
#     time.sleep(2)
#     print('3s')
#     time.sleep(2)
#     print('1s')
# if __name__ == '__main__':
#     t=threading.Thread(target=run,args=('t1',))
#     t.setDaemon(True)    #把子线程设置为守护线程,必须在start()之前设置
#     t.start()
#     t.join()     #设置主线程等待子线程结束
#     print('end')
'''
多线程共享全局变量
线程时进程的执行单元,进程时系统分配资源的最小执行单位,所以在同一个进程中的多线程是共享资源的
'''
# g_num = 100
# def work1():
#     global  g_num
#     for i in range(3):
#         g_num+=1
#     print('in work1 g_num is : %d' % g_num)
#
# def work2():
#     global g_num
#     print('in work2 g_num is : %d' % g_num)
#
# if __name__ == '__main__':
#     t1 = threading.Thread(target=work1)
#     t1.start()
#     time.sleep(1)
#     t2=threading.Thread(target=work2)
#     t2.start()
'''
由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,
所以出现了线程锁,即同一时刻允许一个线程执行操作。线程锁用于锁定资源,可以定义多个锁,像下面的代码,当需要独占
某一个资源时,任何一个锁都可以锁定这个资源,就好比你用不同的锁都可以把这个相同的门锁住一样。
由于线程之间是进行随机调度的,如果有多个线程同时操作一个对象,如果没有很好地保护该对象,会造成程序结果的不可预期,
我们因此也称为“线程不安全”。
为了防止上面情况的发生,就出现了互斥锁(Lock)
'''
# def work():
#     global n
#     lock.acquire()
#     temp = n
#     time.sleep(0.1)
#     n = temp-1
#     lock.release()
#
#
# if __name__ == '__main__':
#     lock = Lock()
#     n = 100
#     l = []
#     for i in range(100):
#         p = Thread(target=work)
#         l.append(p)
#         p.start()
#     for p in l:
#         p.join()
'''
递归锁:RLcok类的用法和Lock类一模一样,但它支持嵌套,在多个锁没有释放的时候一般会使用RLock类
'''
# def func(lock):
#     global gl_num
#     lock.acquire()
#     gl_num += 1
#     time.sleep(1)
#     print(gl_num)
#     lock.release()
#
#
# if __name__ == '__main__':
#     gl_num = 0
#     lock = threading.RLock()
#     for i in range(10):
#         t = threading.Thread(target=func,args=(lock,))
#         t.start()
'''
信号量(BoundedSemaphore类)
互斥锁同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据,比如厕所有3个坑,
那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去
'''
# def run(n,semaphore):
#     semaphore.acquire()   #加锁
#     time.sleep(3)
#     print('run the thread:%s\n' % n)
#     semaphore.release()    #释放
#
#
# if __name__== '__main__':
#     num=0
#     semaphore = threading.BoundedSemaphore(5)   #最多允许5个线程同时运行
#     for i in range(22):
#         t = threading.Thread(target=run,args=('t-%s' % i,semaphore))
#         t.start()
#     while threading.active_count() !=1:
#         pass
#     else:
#         print('----------all threads done-----------')
'''
python线程的事件用于主线程控制其他线程的执行,事件是一个简单的线程同步对象,其主要提供以下的几个方法:
clear将flag设置为 False
set将flag设置为 True
is_set判断是否设置了flag
wait会一直监听flag,如果没有检测到flag就一直处于阻塞状态
事件处理的机制:全局定义了一个Flag,当Flag的值为False,那么event.wait()就会阻塞,当flag值为True,
那么event.wait()便不再阻塞
'''
event = threading.Event()
def lighter():
count = 0
event.set()         #初始者为绿灯
while True:
if 5 < count <=10:
event.clear()  #红灯,清除标志位
print("\33[41;lmred light is on...\033[0m]")
elif count > 10:
event.set()    #绿灯,设置标志位
count = 0
else:
print('\33[42;lmgreen light is on...\033[0m')
time.sleep(1)
count += 1
def car(name):
while True:
if event.is_set():     #判断是否设置了标志位
print('[%s] running.....'%name)
time.sleep(1)
else:
print('[%s] sees red light,waiting...'%name)
event.wait()
print('[%s] green light is on,start going...'%name)
# startTime = time.time()
light = threading.Thread(target=lighter,)
light.start()
car = threading.Thread(target=car,args=('MINT',))
car.start()
endTime = time.time()
# print('用时:',endTime-startTime)
'''
GIL  全局解释器
在非python环境中,单核情况下,同时只能有一个任务执行。多核时可以支持多个线程同时执行。但是在python中,无论有多少个核
同时只能执行一个线程。究其原因,这就是由于GIL的存在导致的。
GIL的全程是全局解释器,来源是python设计之初的考虑,为了数据安全所做的决定。某个线程想要执行,必须先拿到GIL,我们可以
把GIL看做是“通行证”,并且在一个python进程之中,GIL只有一个。拿不到线程的通行证,并且在一个python进程中,GIL只有一个,
拿不到通行证的线程,就不允许进入CPU执行。GIL只在cpython中才有,因为cpython调用的是c语言的原生线程,所以他不能直接操
作cpu,而只能利用GIL保证同一时间只能有一个线程拿到数据。而在pypy和jpython中是没有GIL的
python在使用多线程的时候,调用的是c语言的原生过程。
'''
'''
python针对不同类型的代码执行效率也是不同的
1、CPU密集型代码(各种循环处理、计算等),在这种情况下,由于计算工作多,ticks技术很快就会达到阀值,然后出发GIL的
释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。
2、IO密集型代码(文件处理、网络爬虫等设计文件读写操作),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,
造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序的执行
效率)。所以python的多线程对IO密集型代码比较友好。
'''
'''
主要要看任务的类型,我们把任务分为I/O密集型和计算密集型,而多线程在切换中又分为I/O切换和时间切换。如果任务属于是I/O密集型,
若不采用多线程,我们在进行I/O操作时,势必要等待前面一个I/O任务完成后面的I/O任务才能进行,在这个等待的过程中,CPU处于等待
状态,这时如果采用多线程的话,刚好可以切换到进行另一个I/O任务。这样就刚好可以充分利用CPU避免CPU处于闲置状态,提高效率。但是
如果多线程任务都是计算型,CPU会一直在进行工作,直到一定的时间后采取多线程时间切换的方式进行切换线程,此时CPU一直处于工作状态,
此种情况下并不能提高性能,相反在切换多线程任务时,可能还会造成时间和资源的浪费,导致效能下降。这就是造成上面两种多线程结果不能的解释。
结论:I/O密集型任务,建议采取多线程,还可以采用多进程+协程的方式(例如:爬虫多采用多线程处理爬取的数据);对于计算密集型任务,python此时就不适用了。
'''
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/155890.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 基于AdminLTE的开发框架-AdminEAP

    基于AdminLTE的开发框架-AdminEAPAdminEAP是基于AdminLTE的开发框架,目前所包含的系统功能有:Component组件集成、CURD增删改查demo、系统工具、工作流、系统权限与安全、Github源码与License、联系我们,提供了前端、后端整体解决方案,使得web开发更简单。

  • tomcat宕机无法响应问题研究解决

    tomcat宕机无法响应问题研究解决本人所在公司有一个系统部署单个tomcat上,该系统由前开发人员开发。本人于两年前接手,在对该系统进行开发运维过程中,先后解决了两种tomcat宕机无法提供服务情况,具体如下:(1)JVM内存不足

  • POJ2155:Matrix(二维树状数组,经典)「建议收藏」

    POJ2155:Matrix(二维树状数组,经典)

  • armeabi-v7a架构(sv7a)

    在ANE中如果SDK调用了so库,则需要把so库放到ANE下Android-ARM/lib/armeabi(调试模式)或者armeabi-v7a(发行模式)下。可以贴个ADT代码说明问题://m_configType.equals(“apk”)是否是发行模式//(hasCaptiveRuntime()是否带运行时if((m_configType.equals(“apk”

  • QTreeView实现圆角样式

    QTreeView实现圆角样式QTreeView实现圆角样式在QTreeView等继承于QAbstractItemView表格中,定制表格样式通常都是通过设置项目代理(ItemDelegate)来实现。在这种实现方法中,每个项目(Item)基本上是孤立的,无法有效判断己身周遭环境。如果以此种方法来实现圆角样式,行首或许还能通过方法intQModelindex::column()来判断是否属于第一列来断定,然而行尾难道还要通过QAbstractItemModelQModelindex::*model()获取模型(Model)之后再

  • MFC之COleVariant[通俗易懂]

    MFC之COleVariant[通俗易懂]COleVariant 本质上是一个枚举,用同一种类型来表达不同的子类型。如同boost中的variant。例子COleVariantvar(3.6f);floatv=var.fltVal;CStringstr(“testCOleVariant”);COleVariantvar2(str);CStringcpStr(var2.bstrVal);例子CStrin

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号