[Python]多线程详解

[Python]多线程详解最近在研究pythonthread的一些用法,有看到一篇关于thread的介绍文章,写的很好很详细,看完后转载收藏一下,供温故知新。谢谢作者大大转载于:python多线程详解(超详细)impo

大家好,又见面了,我是你们的朋友全栈君。

最近在研究python thread的一些用法,有看到一篇关于thread的介绍文章,写的很好很详细,看完后转载收藏一下,供温故知新。

谢谢作者大大
转载于:python多线程详解(超详细)

import threading
from threading import Lock,Thread
import time,os


'''
                                      python多线程详解
      什么是线程?
      线程也叫轻量级进程,是操作系统能够进行运算调度的最小单位,它被包涵在进程之中,是进程中的实际运作单位。
      线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其他线程共享进程所
      拥有的全部资源。一个线程可以创建和撤销另一个线程,同一个进程中的多个线程之间可以并发执行
'''

'''
    为什么要使用多线程?
    线程在程序中是独立的、并发的执行流。与分隔的进程相比,进程中线程之间的隔离程度要小,它们共享内存、文件句柄
    和其他进程应有的状态。
    因为线程的划分尺度小于进程,使得多线程程序的并发性高。进程在执行过程之中拥有独立的内存单元,而多个线程共享
    内存,从而极大的提升了程序的运行效率。
    线程比进程具有更高的性能,这是由于同一个进程中的线程都有共性,多个线程共享一个进程的虚拟空间。线程的共享环境
    包括进程代码段、进程的共有数据等,利用这些共享的数据,线程之间很容易实现通信。
    操作系统在创建进程时,必须为改进程分配独立的内存空间,并分配大量的相关资源,但创建线程则简单得多。因此,使用多线程
    来实现并发比使用多进程的性能高得要多。
'''

'''
    总结起来,使用多线程编程具有如下几个优点:
    进程之间不能共享内存,但线程之间共享内存非常容易。
    操作系统在创建进程时,需要为该进程重新分配系统资源,但创建线程的代价则小得多。因此使用多线程来实现多任务并发执行比使用多进程的效率高
    python语言内置了多线程功能支持,而不是单纯地作为底层操作系统的调度方式,从而简化了python的多线程编程。
'''


'''
    普通创建方式
'''
# def run(n):
#     print('task',n)
#     time.sleep(1)
#     print('2s')
#     time.sleep(1)
#     print('1s')
#     time.sleep(1)
#     print('0s')
#     time.sleep(1)
#
# if __name__ == '__main__':
#     t1 = threading.Thread(target=run,args=('t1',))     # target是要执行的函数名(不是函数),args是函数对应的参数,以元组的形式存在
#     t2 = threading.Thread(target=run,args=('t2',))
#     t1.start()
#     t2.start()


'''
    自定义线程:继承threading.Thread来定义线程类,其本质是重构Thread类中的run方法
'''
# class MyThread(threading.Thread):
#     def __init__(self,n):
#         super(MyThread,self).__init__()   #重构run函数必须写
#         self.n = n
#
#     def run(self):
#         print('task',self.n)
#         time.sleep(1)
#         print('2s')
#         time.sleep(1)
#         print('1s')
#         time.sleep(1)
#         print('0s')
#         time.sleep(1)
#
# if __name__ == '__main__':
#     t1 = MyThread('t1')
#     t2 = MyThread('t2')
#     t1.start()
#     t2.start()


'''
    守护线程
    下面这个例子,这里使用setDaemon(True)把所有的子线程都变成了主线程的守护线程,
    因此当主线程结束后,子线程也会随之结束,所以当主线程结束后,整个程序就退出了。
    所谓’线程守护’,就是主线程不管该线程的执行情况,只要是其他子线程结束且主线程执行完毕,主线程都会关闭。也就是说:主线程不等待该守护线程的执行完再去关闭。
'''
# def run(n):
#     print('task',n)
#     time.sleep(1)
#     print('3s')
#     time.sleep(1)
#     print('2s')
#     time.sleep(1)
#     print('1s')
#
# if __name__ == '__main__':
#     t=threading.Thread(target=run,args=('t1',))
#     t.setDaemon(True)
#     t.start()
#     print('end')
'''
    通过执行结果可以看出,设置守护线程之后,当主线程结束时,子线程也将立即结束,不再执行
'''

'''
    主线程等待子线程结束
    为了让守护线程执行结束之后,主线程再结束,我们可以使用join方法,让主线程等待子线程执行
'''
# def run(n):
#     print('task',n)
#     time.sleep(2)
#     print('5s')
#     time.sleep(2)
#     print('3s')
#     time.sleep(2)
#     print('1s')
# if __name__ == '__main__':
#     t=threading.Thread(target=run,args=('t1',))
#     t.setDaemon(True)    #把子线程设置为守护线程,必须在start()之前设置
#     t.start()
#     t.join()     #设置主线程等待子线程结束
#     print('end')


'''
    多线程共享全局变量
    线程时进程的执行单元,进程时系统分配资源的最小执行单位,所以在同一个进程中的多线程是共享资源的
'''
# g_num = 100
# def work1():
#     global  g_num
#     for i in range(3):
#         g_num+=1
#     print('in work1 g_num is : %d' % g_num)
#
# def work2():
#     global g_num
#     print('in work2 g_num is : %d' % g_num)
#
# if __name__ == '__main__':
#     t1 = threading.Thread(target=work1)
#     t1.start()
#     time.sleep(1)
#     t2=threading.Thread(target=work2)
#     t2.start()


'''
        由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,
    所以出现了线程锁,即同一时刻允许一个线程执行操作。线程锁用于锁定资源,可以定义多个锁,像下面的代码,当需要独占
    某一个资源时,任何一个锁都可以锁定这个资源,就好比你用不同的锁都可以把这个相同的门锁住一样。
        由于线程之间是进行随机调度的,如果有多个线程同时操作一个对象,如果没有很好地保护该对象,会造成程序结果的不可预期,
    我们因此也称为“线程不安全”。
        为了防止上面情况的发生,就出现了互斥锁(Lock)
'''
# def work():
#     global n
#     lock.acquire()
#     temp = n
#     time.sleep(0.1)
#     n = temp-1
#     lock.release()
#
#
# if __name__ == '__main__':
#     lock = Lock()
#     n = 100
#     l = []
#     for i in range(100):
#         p = Thread(target=work)
#         l.append(p)
#         p.start()
#     for p in l:
#         p.join()


'''
    递归锁:RLcok类的用法和Lock类一模一样,但它支持嵌套,在多个锁没有释放的时候一般会使用RLock类
'''
# def func(lock):
#     global gl_num
#     lock.acquire()
#     gl_num += 1
#     time.sleep(1)
#     print(gl_num)
#     lock.release()
#
#
# if __name__ == '__main__':
#     gl_num = 0
#     lock = threading.RLock()
#     for i in range(10):
#         t = threading.Thread(target=func,args=(lock,))
#         t.start()


'''
    信号量(BoundedSemaphore类)
    互斥锁同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据,比如厕所有3个坑,
    那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去
'''
# def run(n,semaphore):
#     semaphore.acquire()   #加锁
#     time.sleep(3)
#     print('run the thread:%s\n' % n)
#     semaphore.release()    #释放
#
#
# if __name__== '__main__':
#     num=0
#     semaphore = threading.BoundedSemaphore(5)   #最多允许5个线程同时运行
#     for i in range(22):
#         t = threading.Thread(target=run,args=('t-%s' % i,semaphore))
#         t.start()
#     while threading.active_count() !=1:
#         pass
#     else:
#         print('----------all threads done-----------')

'''
    python线程的事件用于主线程控制其他线程的执行,事件是一个简单的线程同步对象,其主要提供以下的几个方法:
        clear将flag设置为 False
        set将flag设置为 True
        is_set判断是否设置了flag
        wait会一直监听flag,如果没有检测到flag就一直处于阻塞状态
    事件处理的机制:全局定义了一个Flag,当Flag的值为False,那么event.wait()就会阻塞,当flag值为True,
    那么event.wait()便不再阻塞
'''
event = threading.Event()
def lighter():
    count = 0
    event.set()         #初始者为绿灯
    while True:
        if 5 < count <=10:
            event.clear()  #红灯,清除标志位
            print("\33[41;lmred light is on...\033[0m]")
        elif count > 10:
            event.set()    #绿灯,设置标志位
            count = 0
        else:
            print('\33[42;lmgreen light is on...\033[0m')

        time.sleep(1)
        count += 1


def car(name):
    while True:
        if event.is_set():     #判断是否设置了标志位
            print('[%s] running.....'%name)
            time.sleep(1)
        else:
            print('[%s] sees red light,waiting...'%name)
            event.wait()
            print('[%s] green light is on,start going...'%name)


# startTime = time.time()
light = threading.Thread(target=lighter,)
light.start()

car = threading.Thread(target=car,args=('MINT',))
car.start()
endTime = time.time()
# print('用时:',endTime-startTime)

'''
                           GIL  全局解释器
        在非python环境中,单核情况下,同时只能有一个任务执行。多核时可以支持多个线程同时执行。但是在python中,无论有多少个核
        同时只能执行一个线程。究其原因,这就是由于GIL的存在导致的。
        GIL的全程是全局解释器,来源是python设计之初的考虑,为了数据安全所做的决定。某个线程想要执行,必须先拿到GIL,我们可以
        把GIL看做是“通行证”,并且在一个python进程之中,GIL只有一个。拿不到线程的通行证,并且在一个python进程中,GIL只有一个,
        拿不到通行证的线程,就不允许进入CPU执行。GIL只在cpython中才有,因为cpython调用的是c语言的原生线程,所以他不能直接操
        作cpu,而只能利用GIL保证同一时间只能有一个线程拿到数据。而在pypy和jpython中是没有GIL的
        python在使用多线程的时候,调用的是c语言的原生过程。
'''
'''
                            python针对不同类型的代码执行效率也是不同的
        1、CPU密集型代码(各种循环处理、计算等),在这种情况下,由于计算工作多,ticks技术很快就会达到阀值,然后出发GIL的
        释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。
        2、IO密集型代码(文件处理、网络爬虫等设计文件读写操作),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,
        造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序的执行
        效率)。所以python的多线程对IO密集型代码比较友好。
'''
'''
    主要要看任务的类型,我们把任务分为I/O密集型和计算密集型,而多线程在切换中又分为I/O切换和时间切换。如果任务属于是I/O密集型,
    若不采用多线程,我们在进行I/O操作时,势必要等待前面一个I/O任务完成后面的I/O任务才能进行,在这个等待的过程中,CPU处于等待
    状态,这时如果采用多线程的话,刚好可以切换到进行另一个I/O任务。这样就刚好可以充分利用CPU避免CPU处于闲置状态,提高效率。但是
    如果多线程任务都是计算型,CPU会一直在进行工作,直到一定的时间后采取多线程时间切换的方式进行切换线程,此时CPU一直处于工作状态,
    此种情况下并不能提高性能,相反在切换多线程任务时,可能还会造成时间和资源的浪费,导致效能下降。这就是造成上面两种多线程结果不能的解释。
结论:I/O密集型任务,建议采取多线程,还可以采用多进程+协程的方式(例如:爬虫多采用多线程处理爬取的数据);对于计算密集型任务,python此时就不适用了。
'''



版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/155890.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • pta集合相似度_结构相似度

    pta集合相似度_结构相似度原题链接输入样例:33 99 87 1014 87 101 5 877 99 101 18 5 135 18 9921 21 3输出样例:50.00%33.33%#include<bits/stdc++.h>#define x first#define y second#define send string::nopsusing namespace std;typedef long long ll;const int N = 1e4 + 10;cons

  • vue解决跨域_java跨域解决方案

    vue解决跨域_java跨域解决方案现阶段跨域方式有很多种,但是基本思想只有两种:绕过同源策略:历史遗留的产物,虽然思想很好,但是局限性太大(仅支持、因为数据是在中,所以携带数据小)。:通过反向代理绕过去,这是很完美的解决方案,加上会给服务器增加一点压力,不过这点压力问题并不大[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ddoEgRFd-1656482203293)(https://juejin.cn/)][外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4M4avsX0-1

  • 谷歌地球无法连接服务器解决方法_谷歌地图无法连接服务器是什么原因

    谷歌地球无法连接服务器解决方法_谷歌地图无法连接服务器是什么原因从2020年11月20号左右,谷歌地球中国服务器全部关停,所有原来可以使用的hosts,全部不能使用了,导致原来可以在电脑上打开谷歌地球的,现在全部提示无网络,如下图:这个是谷歌地球的最新版,一样打不开:解决办法,尝试了,国内所有的有关谷歌地图的软件。唯一现在可以使用的:BIGEMAP如下图分享地址给大家,大家可以安装来试一试,免费可用:http://download.bigemap.com/bmsetup.rar欢迎留言,提供更多谷歌地球的信息…

  • 数据结构之图的基本概念建议收藏

    一图的定义定义:图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。在图中需要注意的是:(1)

    2021年12月19日
  • 控制流和数据流的区别_jdk动态代理底层原理

    控制流和数据流的区别_jdk动态代理底层原理JBPM工作流原理

  • pycharm的配置_pycharm添加编译器

    pycharm的配置_pycharm添加编译器一、Pycharm简介与安装简介Pycharm与VScode一样,都可以作为python的可视化IDE,功能很强大,可以帮助我们提高编程的效率。包括调试、语法高亮、Project管理、代码跳转、智能提示、自动完成、单元测试、版本控制等。安装作为一个穷孩子,建议还是安装社区免费版,因为社区免费版与专业版无差别,功能是齐全的。安装地址在这里!二、Pycharm配置作为python编程的ID…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号