VAE(Variational Autoencoder)的原理「建议收藏」

VAE(Variational Autoencoder)的原理「建议收藏」Kingma,DiederikP.,andMaxWelling."Auto-encodingvariationalbayes." arXivprepri

大家好,又见面了,我是你们的朋友全栈君。

Kingma, Diederik P., and Max Welling. “Auto-encoding variational bayes.” arXiv preprint arXiv:1312.6114 (2013).

论文的理论推导见:https://zhuanlan.zhihu.com/p/25401928

中文翻译为:变分自动编码器

转自:http://kvfrans.com/variational-autoencoders-explained/

下面是VAE的直观解释,不需要太多的数学知识。 

什么是变分自动编码器?

为了理解VAE,我们首先从最简单的网络说起,然后再一步一步添加额外的部分。

 

一个描述神经网络的常见方法是近似一些我们想建模的函数。然而神经网络也可以被看做是携带信息的数据结构。

 

假如我们有一个带有解卷积层的网络,我们设置输入为值全为1的向量,输出为一张图像。然后,我们可以训练这个网络去减小重构图像和原始图像的平均平方误差。那么训练完后,这个图像的信息就被保留在了网络的参数中。

 

VAE(Variational Autoencoder)的原理「建议收藏」

 

现在,我们尝试使用更多的图片。这次我们用one-hot向量而不是全1向量。我们用[1, 0, 0, 0]代表猫,用[0, 1, 0, 0]代表狗。虽然这要没什么问题,但是我们最多只能储存4张图片。当然,我们也可以增加向量的长度和网络的参数,那么我们可以获得更多的图片。

 

但是,这样的向量很稀疏。为了解决这个问题,我们想使用实数值向量而不是0,1向量。我们可认为这种实数值向量是原图片的一种编码,这也就引出了编码/解码的概念。举个例子,[3.3, 4.5, 2.1, 9.8]代表猫,[3.4, 2.1, 6.7, 4.2] 代表狗。这个已知的初始向量可以作为我们的潜在变量。

 

如果像我上面一样,随机初始化一些向量去代表图片的编码,这不是一个很好的办法,我们更希望计算机能帮我们自动编码。在autoencoder模型中,我们加入一个编码器,它能帮我们把图片编码成向量。然后解码器能够把这些向量恢复成图片。

VAE(Variational Autoencoder)的原理「建议收藏」

 

我们现在获得了一个有点实际用处的网络了。而且我们现在能训练任意多的图片了。如果我们把这些图片的编码向量存在来,那以后我们就能通过这些编码向量来重构我们的图像。我们称之为标准自编码器。

 

但是,我们想建一个产生式模型,而不是一个只是储存图片的网络。现在我们还不能产生任何未知的东西,因为我们不能随意产生合理的潜在变量。因为合理的潜在变量都是编码器从原始图片中产生的。

 

这里有个简单的解决办法。我们可以对编码器添加约束,就是强迫它产生服从单位高斯分布的潜在变量。正式这种约束,把VAE和标准自编码器给区分开来了。

 

现在,产生新的图片也变得容易:我们只要从单位高斯分布中进行采样,然后把它传给解码器就可以了。

 

事实上,我们还需要在重构图片的精确度和单位高斯分布的拟合度上进行权衡。

 

我们可以让网络自己去决定这种权衡。对于我们的损失函数,我们可以把这两方面进行加和。一方面,是图片的重构误差,我们可以用平均平方误差来度量,另一方面。我们可以用KL散度(KL散度介绍)来度量我们潜在变量的分布和单位高斯分布的差异。

 

VAE(Variational Autoencoder)的原理「建议收藏」

 

为了优化KL散度,我们需要应用一个简单的参数重构技巧:不像标准自编码器那样产生实数值向量,VAE的编码器会产生两个向量:一个是均值向量,一个是标准差向量。

 

VAE(Variational Autoencoder)的原理「建议收藏」

 

我们可以这样来计算KL散度:

# z_mean and z_stddev are two vectors generated by encoder network

latent_loss = 0.5 * tf.reduce_sum(tf.square(z_mean) + tf.square(z_stddev) – tf.log(tf.square(z_stddev)) – 1,1)

 

当我们计算解码器的loss时,我们就可以从标准差向量中采样,然后加到我们的均值向量上,就得到了编码去需要的潜在变量。

 

VAE(Variational Autoencoder)的原理「建议收藏」

 

VAE除了能让我们能够自己产生随机的潜在变量,这种约束也能提高网络的产生图片的能力。

 

为了更加形象,我们可以认为潜在变量是一种数据的转换。

 

我们假设我们有一堆实数在区间[0, 10]上,每个实数对应一个物体名字。比如,5.43对应着苹果,5.44对应着香蕉。当有个人给你个5.43,你就知道这是代表着苹果。我们能用这种方法够编码无穷多的物体,因为[0, 10]之间的实数有无穷多个。

 

但是,如果某人给你一个实数的时候其实是加了高斯噪声的呢?比如你接受到了5.43,原始的数值可能是 [4.4 ~ 6.4]之间的任意一个数,真实值可能是5.44(香蕉)。

 

如果给的方差越大,那么这个平均值向量所携带的可用信息就越少。

 

现在,我们可以把这种逻辑用在编码器和解码器上。编码越有效,那么标准差向量就越能趋近于标准高斯分布的单位标准差。

 

这种约束迫使编码器更加高效,并能够产生信息丰富的潜在变量。这也提高了产生图片的性能。而且我们的潜变量不仅可以随机产生,也能从未经过训练的图片输入编码器后产生。

 

VAE的效果:

我做了一些小实验来测试VAE在MNIST手写数字数据集上的表现:

 VAE(Variational Autoencoder)的原理「建议收藏」

这里有一些使用VAE好处,就是我们可以通过编码解码的步骤,直接比较重建图片和原始图片的差异,但是GAN做不到。

 

另外,VAE的一个劣势就是没有使用对抗网络,所以会更趋向于产生模糊的图片。

 

这里也有一些结合VAE和GAN的工作:使用基本的VAE框架,但是用对抗网络去训练解码器。更多细节参考:https://arxiv.org/pdf/1512.09300.pdf 和http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/

 

你可以从这里获得一些这篇博客的代码:https://github.com/kvfrans/variational-autoencoder 和一个整理好的版本: https://jmetzen.github.io/2015-11-27/vae.html

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/155649.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Linux文件系统类型介绍[通俗易懂]

    Linux文件系统类型介绍[通俗易懂]Linux把设备都当作文件一样来进行操作,这样就大大方便了用户的使用(在后面的Linux编程中可以更为明显地看出)。在Linux下与设备相关的文件一般都在/dev目录下,它包括两种,一种是块设备文件,另一种是字符设备文件。这就涉及到文件系统,以下介绍以下Linux文件系统。 1.ext2和ext3 ext3是现在Linux(包括RedHat,Mandrake下…

  • 国内一些比较大型的IT外包公司[通俗易懂]

    国内一些比较大型的IT外包公司[通俗易懂]下面的这些公司是我根据网上的资料整理出来的。找工作的同学都要看看,下面这些是国内一些比较大型的外包公司,想进外包公司的和不想进的都要了解一下,别进错了。序号公司名称英文备注1.博朗软件Bleum上海2.东软集团Neusoft沈阳3.大连华信-大连4.新致软件…

  • Java安全之SnakeYaml反序列化分析

    Java安全之SnakeYaml反序列化分析0x00前言偶然间看到SnakeYaml的资料感觉挺有意思,发现SnakeYaml也存在反序列化利用的问题。借此来分析一波。0x01SnakeYa

    2021年12月12日
  • mqtt服务器数据存储位置,mqtt服务器 数据库[通俗易懂]

    mqtt服务器数据存储位置,mqtt服务器 数据库[通俗易懂]mqtt服务器数据库内容精选换一换云服务器备份:云服务器备份可以对普通服务器进行整机备份或部分磁盘备份,不适用于部署了数据库等应用的服务器。支持备份弹性云服务器ECS和裸金属服务器BMS,成本相对于VBS较高,适合对需要备份整个服务器和快速发放服务器的场景。可以使用备份恢复至原服务器,或者使用备份创建镜像,也可以将备份复制至其他区域。云硬盘备份:云硬盘备份仅针对磁盘进行备用户在部署MySQL或…

  • map怎么转json对象_object转jsonobject

    map怎么转json对象_object转jsonobject业务背景:因为要嵌套一些数据报表,页面点击菜单直接进行url访问,因访问受限要修改url权限,返回数据是JSONObject,防止出现异常,后台进行了一些Map于JSONObject的转换,记录下来配置得json文件格式:{“redashLinks”:[{“name”:”在盈利表”,”url”:”http://i…

  • java输入与输出的格式已经一些知识点[通俗易懂]

    java输入与输出的格式已经一些知识点[通俗易懂]每个语句的首字母都要大写,每个语句写完以后要打分号;写单词时不需要写完,写几个字母再按alt+/ 可以出现单词供你选择;输出语句:System.out.println(“”);用户输入(编译完成后在Console里面输入):Scannerin=newScanner(System.in);in.nextInt():用户输入的整数型。变量:和C语言一样需要

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号