几种常见的损失函数「建议收藏」

几种常见的损失函数「建议收藏」1.损失函数、代价函数与目标函数  损失函数(LossFunction):是定义在单个样本上的,是指一个样本的误差。  代价函数(CostFun

大家好,又见面了,我是你们的朋友全栈君。

1. 损失函数、代价函数与目标函数

  损失函数(Loss Function):是定义在单个样本上的,是指一个样本的误差。
  代价函数(Cost Function):是定义在整个训练集上的,是所有样本误差的平均,也就是所有损失函数值的平均。
  目标函数(Object Function):是指最终需要优化的函数,一般来说是经验风险+结构风险,也就是(代价函数+正则化项)。

2. 常用的损失函数

  这一节转载自博客

(1)0-1损失函数(0-1 loss function)

\[L(y, f(x)) = \begin{cases} 1, & {y \neq f(x) } \\ 0, & {y = f(x)} \end{cases} \]

  也就是说,当预测错误时,损失函数为1,当预测正确时,损失函数值为0。该损失函数不考虑预测值和真实值的误差程度。只要错误,就是1。

(2)平方损失函数(quadratic loss function)

\[L(y, f(x)) = (y – f(x))^2 \]

  是指预测值与实际值差的平方。

(3)绝对值损失函数(absolute loss function)

\[L(y, f(x)) = | y -f(x) | \]

  该损失函数的意义和上面差不多,只不过是取了绝对值而不是求绝对值,差距不会被平方放大。

(4)对数损失函数(logarithmic loss function)

\[L(y, p(y|x)) = – \log p(y|x) \]

  这个损失函数就比较难理解了。事实上,该损失函数用到了极大似然估计的思想。P(Y|X)通俗的解释就是:在当前模型的基础上,对于样本X,其预测值为Y,也就是预测正确的概率。由于概率之间的同时满足需要使用乘法,为了将其转化为加法,我们将其取对数。最后由于是损失函数,所以预测正确的概率越高,其损失值应该是越小,因此再加个负号取个反。

(5)Hinge loss

  Hinge loss一般分类算法中的损失函数,尤其是SVM,其定义为:

\[L(w,b) = max \{0, 1-yf(x) \} \]

  其中 $ y = +1 或 y = -1 $ ,$ f(x) = wx+b $ ,当为SVM的线性核时。


3. 常用的代价函数

(1)均方误差(Mean Squared Error)

\[MSE = \frac{1}{N} \sum_{i=1}^N (y^{(i)} – f(x^{(i)}))^2 \]

  均方误差是指参数估计值与参数真值之差平方的期望值; MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度。( $ i $ 表示第 $ i $ 个样本,$ N $ 表示样本总数)
  通常用来做回归问题的代价函数

(2)均方根误差

\[RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^N (y^{(i)} – f(x^{(i)}))^2 } \]

  均方根误差是均方误差的算术平方根,能够直观观测预测值与实际值的离散程度。
  通常用来作为回归算法的性能指标

(3)平均绝对误差(Mean Absolute Error)

\[MAE = \frac{1}{N} \sum_{i=1}^N |y^{(i)} – f(x^{(i)})| \]

  平均绝对误差是绝对误差的平均值 ,平均绝对误差能更好地反映预测值误差的实际情况。
  通常用来作为回归算法的性能指标

(4)交叉熵代价函数(Cross Entry)

\[H(p,q) = – \sum_{i=1}^{N} p(x^{(i)}) \log {q(x^{(-i)})} \]

  交叉熵是用来评估当前训练得到的概率分布与真实分布的差异情况,减少交叉熵损失就是在提高模型的预测准确率。其中 $ p(x) $ 是指真实分布的概率, q(x) 是模型通过数据计算出来的概率估计。
  比如对于二分类模型的交叉熵代价函数(可参考逻辑回归一节):

\[L(w,b) = -\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} \log {f(x^{(i)})} + ( 1- y^{(i)}) \log {(1- f(x^{(i)})})) \]

  其中 $ f(x) $ 可以是sigmoid函数。或深度学习中的其它激活函数。而 $ y^{(i)} \in { 0,1 } $ 。
  通常用做分类问题的代价函数。


引用及参考:
[1] https://blog.csdn.net/reallocing1/article/details/56292877
[2] https://blog.csdn.net/m_buddy/article/details/80224409
[3] https://blog.csdn.net/chaipp0607/article/details/76037351
[4] https://blog.csdn.net/shenxiaoming77/article/details/51614601

写在最后:本文参考以上资料进行整合与总结,文章中可能出现理解不当的地方,若有所见解或异议可在下方评论,谢谢!
若需转载请注明https://www.cnblogs.com/lliuye/p/9549881.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/154310.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 爬虫PyQuery「建议收藏」

    爬虫PyQuery「建议收藏」–爬虫pyquery字符串初始化html=””” ……””””frompyqueryimportPyQueryaspqdoc=pq(html)print(doc(‘li’))–其实就是个css选择器,选出了所有的li标签url初始化frompyqueryimportPyQueryaspqdoc=pq(url=”http://www.baidu…

  • Centos7 安装和配置MySQL5.7

    Centos7 安装和配置MySQL5.7第一步,下载MySQL安装[root@localhost~]#cd/home/data/[root@localhostdata]#lsget-docker.shnginx-1.10.1nginx-1.10.1.tar.gzredis-5.0.3redis-5.0.3.tar.gzserver-jre-8u131-linux-x64.tar.gzzooke…

  • 字符串分割与拼接「建议收藏」

    字符串分割与拼接「建议收藏」.字符串分割与拼接//@””   空的字符串对象     ——-分割     NSString * ptr = @”I am a man”;     NSArray * array = [ptr componentsSeparatedByString:@” “];//将字符串整体作为分割条件 返回值为NSArray不可变数组     NSMutableArray * array1 = 

  • linux内核版本介绍_ubuntu内核版本查看

    linux内核版本介绍_ubuntu内核版本查看问题是否有Ubuntu版本列表,默认对应Linux内核版本?答案14.10WartyWarthog2.6.85.04HoaryHedgehog2.6.105.10BreezyBadger2.6.126.06DapperDrake2.6.156.10EdgyEft2.6.177.04FeistyFawn2.6.207.10GutsyGibbon2.6.228…

  • 单片机控制步进电机

    单片机控制步进电机简介:用单片机控制步进电机正转反转加速减速;由LCD1602实时显示步进电机的状态;F-正转,B-反转;数字越大,转速越大;仿真原理图如下:MCU和LCD1602显示模块:ULN2803驱动和步进电机模块:C语言代码如下:/*—————————–FileName:StepperMotor.hFunction:函数头文件Autho…

  • 自动伽马校正_python 拟合

    自动伽马校正_python 拟合对lena.jpg进行伽马校正(c=1c=1c=1,g=2.2g=2.2g=2.2)!伽马校正用来对照相机等电子设备传感器的非线性光电转换特性进行校正。如果图像原样显示在显示器等上,画面就会显得很暗。伽马校正通过预先增大RGB的值来排除显示器的影响,达到对图像修正的目的。由于下式引起非线性变换,在该式中,xxx被归一化,限定在[0,1][0,1][0,1]范围内。ccc是常数,ggg为伽马变量(通常取2.22.22.2):x′=c Iingx’=c\{I_{in}}^gx′

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号