背包九讲——完全背包

背包九讲——完全背包完全背包是01背包的加强版,先来看看《背包问题九讲》里是怎么描述这个问题的:题目有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。所属专栏:戳我访问再来看看《背包问题九讲》是怎么解决这个问题的:基本思路这个问题非常类似于01背包问题,所不同

大家好,又见面了,我是你们的朋友全栈君。

完全背包是01背包的加强版,先来看看《背包问题九讲》里是怎么描述这个问题的:

题目
有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。


所属专栏:戳我访问
再来看看《背包问题九讲》是怎么解决这个问题的:

基本思路
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:
f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}
这跟01背包问题一样有O(VN)个状态需要求解,但求解每个状态的时间已经不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度可以认为是O(V*Σ(V/c[i])),是比较大的。
将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。


呃呃呃,因为这是一个时间复杂度最慢的一个思想,故不给出我的理解和代码。


再来看一个小小的优化:

一个简单有效的优化
完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。


因为这个优化十分简单,代码实现不难,且优化的时间只是常数级别的,故不给出我的理解和代码。


好了,终于到了今天我最想讲的O(VN)的优化了,我们先来看一看《背包问题九讲》里是怎么写的:

O(VN)的算法
这个算法使用一维数组,先看伪代码:

for i=1..N
    for v=0..V
        f[v]=max{f[v],f[v-cost]+weight}

你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v=0..V的顺序循环。这就是这个简单的程序为何成立的道理。
值得一提的是,上面的伪代码中两层for循环的次序可以颠倒。这个结论有可能会带来算法时间常数上的优化。
这个算法也可以以另外的思路得出。例如,将基本思路中求解f[i][v-c[i]]的状态转移方程显式地写出来,代入原方程中,会发现该方程可以等价地变形成这种形式:
f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]}
将这个方程用一维数组实现,便得到了上面的伪代码。
最后抽象出处理一件完全背包类物品的过程伪代码:

procedure CompletePack(cost,weight) for v=cost..V f[v]=max{f[v],f[v-c[i]]+w[i]}

呃呃呃,这里的使用的语言好像不是c++,请各位谅解。
我的理解是:先来看看上次写的01背包:戳我访问,可以发现,在01背包使用一维数组时,v的循环是从后往前的,原因是不然程序重复使用一个物品,那么这里可以重复使用同一个物品,直接换成从前往后不就行了吗!
代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>

int c[1001],w[1001],f[1001];
int main()
{
    int n,v;
    std::cin>>n>>v;
    for(int i = 1;i<=n;i++)std::cin>>c[i]>>w[i];
    for(int i = 1;i<=n;i++)
        for(int j = c[i];j<=v;j++)
            f[j] = std::max(f[j],f[j-c[i]]+w[i]);
    std::cout<<f[v];
    return 0;
} 
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/153471.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • SAGA GIS_GOSAT卫星数据下载

    SAGA GIS_GOSAT卫星数据下载官网:SAGA-SystemforAutomatedGeoscientificAnalyseshttps://saga-gis.sourceforge.io/en/index.html点击下载按钮点击后等几秒即可下载下载时间过长

  • 发展,需求驱动 &#183; 一间 所见即所得

    发展,需求驱动 &#183; 一间 所见即所得

  • mysql listagg函数_Oracle函数之LISTAGG「建议收藏」

    mysql listagg函数_Oracle函数之LISTAGG「建议收藏」最近在学习的过程中,发现一个挺有意思的Oracle函数,它可实现对列值的拼接。下面我们来看看其具体用法。最近在学习的过程中,发现一个挺有意思的Oracle函数,它可实现对列值的拼接。下面我们来看看其具体用法。用法:对其作用,官方文档的解释如下:Foraspecifiedmeasure,LISTAGGordersdatawithineachgroupspecifiedinth…

  • modelsim-win64-10.4-se 破解攻略

    modelsim-win64-10.4-se 破解攻略在实验室换了新的win10系统,原来的quartus9.0在win10上安装不成功,没办法只能换成13.1版本,已经安装可用,下面是与其配合的modelsim-win64-10.4-se的破解攻略,安装教程可以去看正点原子的FPGA开发手册,写的很详细,但是没有讲破解方法,下面是可用的破解方法:软件安装好了却不能用,想必大家都有过这样的痛苦和无奈。这款软件的破解花了我整整一个下午的时间…

  • win7安装vs2015失败_win10还是win7

    win7安装vs2015失败_win10还是win7错误日志:解决方法:1、把vs2008镜像文件下的\WCU\WebDesignerCore\WebDesignerCore.EXE手动解压到一个地方(注意解压出来的文件夹里面有个Office.zh-cn)2、找一个Office2007光盘或光盘镜像,找到Office.zh-cn文件夹,把该文件夹复制,然后覆盖到上一步解压中的Office.zh-cn中3、在第一步解压出来的文

  • 亿图永久激活码-激活码分享

    (亿图永久激活码)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html0BXA05X8YC-eyJsaWNlbnNlSW…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号