CreateMutex、WaitForSingleObject、ReleaseMutex「建议收藏」

CreateMutex、WaitForSingleObject、ReleaseMutex「建议收藏」我们对线程做一些简单的同步处理,这里我们用互斥量(Mutex)。互斥量(Mutex)和二元信号量类似,资源仅允许一个线程访问。与二元信号量不同的是,信号量在整个系统中可以被任意线程获取和释放,也就是说,同一个信号量可以由一个线程获取而由另一线程释放。而互斥量则要求哪个线程获取了该互斥量锁就由哪个线程释放,其它线程越俎代庖释放互斥量是无效的。在使用互斥量进行线程同步时会用到以下几个函数:HANDLEWINAPICreateMutex(LPSECURITY_ATTRIBUTESlpMute

大家好,又见面了,我是你们的朋友全栈君。

我们对线程做一些简单的同步处理,这里我们用互斥量(Mutex)。

互斥量(Mutex)和二元信号量类似,资源仅允许一个线程访问。与二元信号量不同的是,信号量在整个系统中可以被任意线程获取和释放,也就是说,同一个信号量可以由一个线程获取而由另一线程释放。而互斥量则要求哪个线程获取了该互斥量锁就由哪个线程释放,其它线程越俎代庖释放互斥量是无效的。

在使用互斥量进行线程同步时会用到以下几个函数:

HANDLE WINAPI CreateMutex(
    LPSECURITY_ATTRIBUTES lpMutexAttributes,        //线程安全相关的属性,常置为NULL
    BOOL                  bInitialOwner,            //创建Mutex时的当前线程是否拥有Mutex的所有权
    LPCTSTR               lpName                    //Mutex的名称
);

说明: lpMutexAttributes也是表示安全的结构,与CreateThread中的lpThreadAttributes功能相同,表示决定返回的句柄是否可被子进程继承,如果为NULL则表示返回的句柄不能被子进程继承。bInitialOwner表示创建Mutex时的当前线程是否拥有Mutex的所有权,若为TRUE则指定为当前的创建线程为Mutex对象的所有者,其它线程访问需要先ReleaseMutex。lpName为Mutex的名称。

DWORD WINAPI WaitForSingleObject(
    HANDLE hHandle,                             //要获取的锁的句柄
    DWORD  dwMilliseconds                           //超时间隔
);

说明: WaitForSingleObject的作用是等待一个指定的对象(如Mutex对象),直到该对象处于非占用的状态(如Mutex对象被释放)或超出设定的时间间隔。除此之外,还有一个与它类似的函数WaitForMultipleObjects,它的作用是等待一个或所有指定的对象,直到所有的对象处于非占用的状态,或超出设定的时间间隔。

hHandle:要等待的指定对象的句柄。dwMilliseconds:超时的间隔,以毫秒为单位;如果dwMilliseconds为非0,则等待直到dwMilliseconds时间间隔用完或对象变为非占用的状态,如果dwMilliseconds 为INFINITE则表示无限等待,直到等待的对象处于非占用的状态。

BOOL WINAPI ReleaseMutex(HANDLE hMutex);

说明:释放所拥有的互斥量锁对象,hMutex为释放的互斥量的句柄。

#include "stdafx.h"
#include <windows.h>
#include <iostream>
#define NAME_LINE 40
//定义线程函数传入参数的结构体
typedef struct __THREAD_DATA
{ 

int nMaxNum;
char strThreadName[NAME_LINE];
__THREAD_DATA() : nMaxNum(0)
{ 

memset(strThreadName, 0, NAME_LINE * sizeof(char));
}
}THREAD_DATA;
HANDLE g_hMutex = NULL;     //互斥量
//线程函数
DWORD WINAPI ThreadProc(LPVOID lpParameter)
{ 

THREAD_DATA* pThreadData = (THREAD_DATA*)lpParameter;
for (int i = 0; i < pThreadData->nMaxNum; ++ i)
{ 

//请求获得一个互斥量锁
WaitForSingleObject(g_hMutex, INFINITE);
cout << pThreadData->strThreadName << " --- " << i << endl;
Sleep(100);
//释放互斥量锁
ReleaseMutex(g_hMutex);
}
return 0L;
}
int main()
{ 

//创建一个互斥量
g_hMutex = CreateMutex(NULL, FALSE, NULL);
//初始化线程数据
THREAD_DATA threadData1, threadData2;
threadData1.nMaxNum = 5;
strcpy(threadData1.strThreadName, "线程1");
threadData2.nMaxNum = 10;
strcpy(threadData2.strThreadName, "线程2");
//创建第一个子线程
HANDLE hThread1 = CreateThread(NULL, 0, ThreadProc, &threadData1, 0, NULL);
//创建第二个子线程
HANDLE hThread2 = CreateThread(NULL, 0, ThreadProc, &threadData2, 0, NULL);
//关闭线程
CloseHandle(hThread1);
CloseHandle(hThread2);
//主线程的执行路径
for (int i = 0; i < 5; ++ i)
{ 

//请求获得一个互斥量锁
WaitForSingleObject(g_hMutex, INFINITE);
cout << "主线程 === " << i << endl;
Sleep(100);
//释放互斥量锁
ReleaseMutex(g_hMutex);
}
system("pause");
return 0;
}

结果:

主线程 === 0
线程1 — 0
线程2 — 0
主线程 === 1
线程1 — 1
线程2 — 1
主线程 === 2
线程1 — 2
线程2 — 2
主线程 === 3
线程1 — 3
线程2 — 3
主线程 === 4
线程1 — 4
请按任意键继续… 线程2 — 4
线程2 — 5
线程2 — 6
线程2 — 7
线程2 — 8
线程2 — 9
为进一步理解线程同步的重要性和互斥量的使用方法,我们再来看一个例子。

买火车票是大家春节回家最为关注的事情,我们就简单模拟一下火车票的售票系统(为使程序简单,我们就抽出最简单的模型进行模拟):有500张从北京到赣州的火车票,在8个窗口同时出售,保证系统的稳定性和数据的原子性。

【Demo4】:模拟火车售票系统
SaleTickets.h

#include "stdafx.h"
#include <windows.h>
#include <iostream>
#include <strstream> 
#include <string>
using namespace std;
#define NAME_LINE 40
//定义线程函数传入参数的结构体
typedef struct __TICKET
{ 

int nCount;
char strTicketName[NAME_LINE];
__TICKET() : nCount(0)
{ 

memset(strTicketName, 0, NAME_LINE * sizeof(char));
}
}TICKET;
typedef struct __THD_DATA
{ 

TICKET* pTicket;
char strThreadName[NAME_LINE];
__THD_DATA() : pTicket(NULL)
{ 

memset(strThreadName, 0, NAME_LINE * sizeof(char));
}
}THD_DATA;
//基本类型数据转换成字符串
template<class T>
string convertToString(const T val)
{ 

string s;
std::strstream ss;
ss << val;
ss >> s;
return s;
}
//售票程序
DWORD WINAPI SaleTicket(LPVOID lpParameter);

SaleTickets.cpp

#include "stdafx.h"
#include <windows.h>
#include <iostream>
#include "SaleTickets.h"
using namespace std;
extern HANDLE g_hMutex;
//售票程序
DWORD WINAPI SaleTicket(LPVOID lpParameter)
{ 

THD_DATA* pThreadData = (THD_DATA*)lpParameter;
TICKET* pSaleData = pThreadData->pTicket;
while(pSaleData->nCount > 0)
{ 

//请求获得一个互斥量锁
WaitForSingleObject(g_hMutex, INFINITE);
if (pSaleData->nCount > 0)
{ 

cout << pThreadData->strThreadName << "出售第" << pSaleData->nCount -- << "的票,";
if (pSaleData->nCount >= 0) { 

cout << "出票成功!剩余" << pSaleData->nCount << "张票." << endl;
} else { 

cout << "出票失败!该票已售完。" << endl;
}
}
Sleep(10);
//释放互斥量锁
ReleaseMutex(g_hMutex);
}
return 0L;
}

测试程序:

//售票系统
void Test2()
{ 

//创建一个互斥量
g_hMutex = CreateMutex(NULL, FALSE, NULL);
//初始化火车票
TICKET ticket;
ticket.nCount = 100;
strcpy(ticket.strTicketName, "北京-->赣州");
const int THREAD_NUMM = 8;
THD_DATA threadSale[THREAD_NUMM];
HANDLE hThread[THREAD_NUMM];
for(int i = 0; i < THREAD_NUMM; ++ i)
{ 

threadSale[i].pTicket = &ticket;
string strThreadName = convertToString(i);
strThreadName = "窗口" + strThreadName;
strcpy(threadSale[i].strThreadName, strThreadName.c_str());
//创建线程
hThread[i] = CreateThread(NULL, NULL, SaleTicket, &threadSale[i], 0, NULL);
//请求获得一个互斥量锁
WaitForSingleObject(g_hMutex, INFINITE);
cout << threadSale[i].strThreadName << "开始出售 " << threadSale[i].pTicket->strTicketName << " 的票..." << endl;
//释放互斥量锁
ReleaseMutex(g_hMutex);
//关闭线程
CloseHandle(hThread[i]);
}
system("pause");
}

结果:

窗口0开始出售 北京–>赣州 的票…
窗口0出售第100的票,出票成功!剩余99张票.
窗口1开始出售 北京–>赣州 的票…
窗口1出售第99的票,出票成功!剩余98张票.
窗口0出售第98的票,出票成功!剩余97张票.
窗口2开始出售 北京–>赣州 的票…
窗口2出售第97的票,出票成功!剩余96张票.
窗口1出售第96的票,出票成功!剩余95张票.
窗口0出售第95的票,出票成功!剩余94张票.
窗口3开始出售 北京–>赣州 的票…
窗口3出售第94的票,出票成功!剩余93张票.
窗口2出售第93的票,出票成功!剩余92张票.
窗口1出售第92的票,出票成功!剩余91张票.
窗口0出售第91的票,出票成功!剩余90张票.
窗口4开始出售 北京–>赣州 的票…
窗口4出售第90的票,出票成功!剩余89张票.
窗口3出售第89的票,出票成功!剩余88张票.
窗口2出售第88的票,出票成功!剩余87张票.
窗口1出售第87的票,出票成功!剩余86张票.
窗口0出售第86的票,出票成功!剩余85张票.
窗口5开始出售 北京–>赣州 的票…
窗口5出售第85的票,出票成功!剩余84张票.
窗口4出售第84的票,出票成功!剩余83张票.
窗口3出售第83的票,出票成功!剩余82张票.
窗口2出售第82的票,出票成功!剩余81张票.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/153172.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • @SpringBootApplication_springboot启动类作用

    @SpringBootApplication_springboot启动类作用Args作用传递参数的一种方式;例如启动的时候java-jar–spring.profiles.active=prod或者更改自己的自定义配置信息;使用方式是–key=value它的信息优先于项目里面的配置;我们现在大部分项目都是用SpringBoot进行开发的,一般启动类的格式是SpringApplication.run(SpringBootDemoPropertiesApplication.class,args);但是好像平常一直也没有用到args;也没有穿过参数

  • C语言 排序算法_C语言中三大经典的排序算法

    C语言 排序算法_C语言中三大经典的排序算法文章目录前言一、插入排序1.1直接插入排序1.2希尔排序二、使用步骤1.引入库2.读入数据总结前言常见的排序算法如下:一、插入排序1.1直接插入排序基本思想:把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列。实际中我们玩扑克牌时,就用了插入排序的思想:当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],a

    2022年10月30日
  • 【STM32F407的DSP教程】第48章 STM32F407的中值滤波器实现,适合噪声和脉冲过滤(支持逐个数据的实时滤波)「建议收藏」

    【STM32F407的DSP教程】第48章 STM32F407的中值滤波器实现,适合噪声和脉冲过滤(支持逐个数据的实时滤波)「建议收藏」完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547第48章STM32F407的中值滤波器实现,适合噪声和脉冲过滤(支持逐个数据的实时滤波)本章节讲解中值滤波器实现,适用于噪声和脉冲的过滤。目录48.1初学者重要提示48.2中值滤波器介绍48.3中值滤波器原理48.4Matlab中值滤波器实现48.5中值滤波器设计48.5.1函数MidFilter…

  • Java实现远程开关机(网络唤醒)

    Java实现远程开关机(网络唤醒)Java实现远程开关机是做的一个在局域网下实现一台机器对多台机器的开关机控制远程唤醒实现是通过电源的一种协议进行控制的,需要知道被唤醒机器的mac地址首先要须知:网络唤醒条件网络唤醒需要终端的主板和网卡支持,需要先在BIOS设置支持网络唤醒网络唤醒要接通电源保证网卡能通电要接网线不能是wifi如果强制关机可能不能通过网络唤醒来开机跨交换机或者跨路由的话就有可能不支持唤醒跨多…

  • R语言绘制火山图_r语言画曲线图

    R语言绘制火山图_r语言画曲线图基因表达差异火山图提到差异火山图,相信很多同学肯定不陌生。因为形似火山(喷发),所以称为火山图。差异火山图最常见于转录组数据的分析中,在基因表达层面,用于展示两组间表达量上调和下调的基因。常规的火山图中主要包含了两个重要信息,差异表达倍数(FoldChange值,简称FC,作图时会对FC进行log转化,根据logFC值的正负判断这些基因的表达量是上调了还是下调了)以及统计学显著性p值(p-value,通常是FDR校正后的p值,根据校正后p值判断基因表达量上调或下调是否具有显著性)。因此在判..

    2022年10月19日
  • 产品需求分析与市场分析方法汇总(SWOT+PDCA+波士顿矩阵BCG+5W2H分析法+STAR关键事件分析法+目标管理SMART+时间管理紧急重要矩阵+WBS任务分解法)

    产品需求分析与市场分析方法汇总(SWOT+PDCA+波士顿矩阵BCG+5W2H分析法+STAR关键事件分析法+目标管理SMART+时间管理紧急重要矩阵+WBS任务分解法)产品需求分析与市场分析方法汇总(SWOT+PDCA+波士顿矩阵BCG+5W2H分析法+STAR关键事件分析法+目标管理SMART+时间管理紧急重要矩阵+WBS任务分解法)产品需求分析与市场分析方法汇总http://www.chanpin100.com/article/55744一、KANO模型KANO模型分为:基本型需求、期望型需求、兴奋型需求。1.基本型需求,这类需求是应…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号