什么是莫兰指数

什么是莫兰指数什么是莫兰指数?根据百度百科的定义是“空间自相关系数的一种,其值分布在[-1,1],用于判别空间是否存在自相关。”简单的说就是判定一定范围内的空间实体相互之间是否存在相关关系,比如:一座座居民楼它们是聚集在一块还是离散分布在各处。莫兰指数数值分布在[-1,1],[0,1]说明各地理实体之间存在正相关的关系,[-1,0]之间说明存在负相关的关系,而0值则无相关…

大家好,又见面了,我是你们的朋友全栈君。

什么是莫兰指数?

根据百度百科的定义是“空间自相关系数的一种,其值分布在[-1,1],用于判别空间是否存在自相关。”

简单的说就是判定一定范围内的空间实体相互之间是否存在相关关系,比如:一座座居民楼它们是聚集在一块还是离散分布在各处。

莫兰指数数值分布在[-1,1],[0,1]说明各地理实体之间存在正相关的关系,[-1,0]之间说明存在负相关的关系,而0值则无相关关系。


  • 因为位置的确定是相对的,相对于基点而言。如:高程的确定需要黄海基准,地理位置的确定需要西安80坐标系。
  • 一簇数据点的空间的分布是聚集还是离散也是相对的,是相对于更大空间范围而定的。如:霍乱病例的发病地点数据,它的空间分布,是聚集还是离散,是相对于更大尺度的空间范围而言,相对于街区它是离散的,相对于城市它是集聚的。
  • 空间自相关的分析方法是通过假设检验进行的,对于霍乱病例数据,它首先假设病例的分布符合某种分布关系,比如:离散或聚集,这种进行统计检验时预先建立的假设,称为零假设或原假设。零假设成立时,有关统计量应服从已知的某种概率分布
  • 空间自相关工具同时根据要素位置和要素值来度量空间自相关。在给定一组要素及相关属性的情况下,该工具评估所表达的模式是聚类模式、离散模式还是随机模式。该工具通过计算 Moran’s I 指数值、z 得分和 p 值来对该指数的显著性进行评估。p 值是根据已知分布的曲线得出的面积近似值(受检验统计量限制)。

在理解莫兰指数之前需要一些先验知识的支撑:

假设检验/统计检验:统计检验亦称“假设检验”。根据抽样结果,在一定可靠性程度上对一个或多个总体分布的原假设作出拒绝还是不拒绝(予以接受)结论的程序。决定常取决于样本统计量的数值与所假设的总体参数是否有显著差异。这时称差异显著性检验。检验的推理逻辑为具有概率性质的反证法。例如,在参数假设检验中,当对总体分布的参数作出原假设 H0 后,先承认总体与原假设相同,然后根据样本计算一个统计量,并求出该统计量的分布,再给定一个小概率(一般为 0.05,0.01 等,视情况而定),确定拒绝原假设 H0 的区域(拒绝域)。

零假设:统计学术语,又称原假设,指进行统计检验时预先建立的假设。 零假设成立时,有关统计量应服从已知的某种概率分布

计算公式什么是莫兰指数

以下通过一个详细的实验具体说明。


实验

实验目的

通过Arcgis空间自相关工具分析旧金山区域犯罪与地区位置的关系,从而熟悉空间自相关工具的使用和莫兰I指数的判读。

数据准备

  • 旧金山区域行政区划数据
  • 区域破坏、抢劫、毒品、偷车犯罪点数据

部分数据展示(来源于Center for Spatial Data Science):

什么是莫兰指数

图1 旧金山行政区划数据

什么是莫兰指数

图2 毒品犯罪矢量数据

实验步骤

基于空间位置与另一图层作连接,计算各区域面内犯罪数量,结果如下:

什么是莫兰指数

图3 区域面犯罪数量统计

2、生成空间权重矩阵

参数设置:空间关系的概念化选择INVERSE_DISTANCE(一个要素对另一个要素的影响随着距离的增加而减少),距离法选择MANHATTAN(计算每个要素与邻近要素之间的距离的方式为城市街区计算类型)。

什么是莫兰指数

图4 权重矩阵设置

空间关系的概念化:

空间统计分析和传统(非空间)统计分析的一个重要区别是空间统计分析将空间和空间关系直接整合到算法中。因此,空间统计工具箱中的很多工具都要求用户在执行分析之前为空间关系的概念化表述参数选择一个值。

常见的概念化包括:

反距离/反距离平方、距离范围、无差别的区域、面邻接、K最近领域、Delaunay三角测量

空间关系的概念化参数选择:

对要素在空间中彼此交互方式构建的模型越逼真,结果就越准确。空间关系的概念化参数的选择应反映要分析的要素之间的固有关系。考虑到所用数据为犯罪数据,目的为分析旧金山区域犯罪与地区位置的关系,因而选择反距离空间关系的概念化方法能更好的达到分析目的。

“反距离的平方”与“反距离”两者的概念是一样的,只是“反距离的平方”的曲线的坡度更陡,相邻要素之间的影响下降得更快,并且只有目标要素的最近相邻要素会对要素的计算产生重大影响。

对于反距离幂的影响,幂越大,距离近的点的作用越大,插值的结果越陡峭;幂越小,距离的间隔作用越小,插值的结果越平滑;常规上幂值不应该太大。

距离法:

指定计算每个要素与邻近要素之间的距离的方式。分为两种:

EUCLIDEAN —两点间的直线距离

MANHATTAN —沿垂直轴度量的两点间的距离(城市街区);计算方法是对两点的 x 和 y 坐标的差值(绝对值)求和。

指数:

选择幂值。

阈值距离:

为空间关系的反距离和固定距离概念化指定中断距离。使用在环境输出坐标系中指定的单位输入此值。为空间关系的空间时间窗概念化定义空间窗的大小。零值表示未应用任何距离阈值。此参数留空时,将根据输出要素类范围和要素数目计算默认阈值。

相邻要素的数目:

用于表示相邻要素最小数目或精确数目的整数。

对于 K_NEAREST_NEIGHBORS,每个要素的相邻要素数目正好等于这个指定数目。对于 INVERSE_DISTANCE 或 FIXED_DISTANCE,每个要素将至少具有这些数目的相邻要素(如有必要,距离阈值将临时增大以确保达到这个相邻要素数目)。选中一个邻接空间关系的概念化后,将向每个面分配至少该最小数目的相邻要素。对于具有少于此相邻要素数目的面,将根据要素质心邻近性获得附加相邻要素。

3、通过空间权重矩阵计算莫兰I指数,分析毒品犯罪与空间位置的相关性。

什么是莫兰指数

图5 空间自相关工具设置

什么是莫兰指数

图6 运行结果

 

什么是莫兰指数

什么是莫兰指数

图7 报表文件

4、选择INVERSE_DISTANCE空间关系概念化方法分析区域破坏犯罪与空间位置的相关性。

什么是莫兰指数

图8 参数设置

什么是莫兰指数

图9 报表文件

5、选择INVERSE_DISTANCE_SQUARED空间关系概念化方法分析抢劫犯罪与空间位置的相关性。

什么是莫兰指数

图10 报表文件

6、选择FIXED_DISTANCE_BAND空间关系概念化方法分析偷盗车辆犯罪与空间位置的相关性。

什么是莫兰指数

图11 报表文件

结果分析

参数解释

标准差:在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。

置信区间:置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间是对这个样本的某个总体参数的区间估计。置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度。置信区间给出的是被测量参数的测量值的可信程度,即前面所要求的“一个概率”。

  1. 在置信水平相同的情况下,样本量越多,置信区间越窄。
  2. 置信区间变窄的速度不像样本量增加的速度那么快。
  3. 样本量相同的情况下,置信水平越高,置信区间越宽。

P:p 值表示概率。对于模式分析工具来说,p 值表示所观测到的空间模式是由某一随机过程创建而成的概率。当 p 很小时,意味着所观测到的空间模式不太可能产生于随机过程(小概率事件),因此您可以拒绝零假设。

Z得分:Z 得分表示标准差的倍数。

莫兰指数:

Moran’s I 值范围在(-1,1)之间。Moran’s I >0表示空间正相关性,其值越大,空间相关性越明显。Moran’s I <0表示空间负相关性,其值越小,空间差异越大,否则,Moran’s I = 0,空间呈随机性。

报表分析

以选择FIXED_DISTANCE_BAND空间关系概念化方法生成的报表为例分析,

什么是莫兰指数

其Moran’I指数为0.18,表明犯罪事件具有强烈的空间相关性、聚集性即某地的犯罪率与该地区的位置有关。Z得分约为15,表明是标准差的15倍,结果分布在正在正态分布的两端,结合Moran’I值为正,可以得出结果分布在正态分布的右端,为聚集型。P值为0,表明该结果百分百不为随机数据生成,结果具有可信度。

# 欢迎使用Markdown编辑器

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

新的改变

我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:

  1. 全新的界面设计 ,将会带来全新的写作体验;
  2. 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
  3. 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
  4. 全新的 KaTeX数学公式 语法;
  5. 增加了支持甘特图的mermaid语法1 功能;
  6. 增加了 多屏幕编辑 Markdown文章功能;
  7. 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
  8. 增加了 检查列表 功能。

功能快捷键

撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

如何改变文本的样式

强调文本 强调文本

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目 Value
电脑 $1600
手机 $12
导管 $1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列 第二列 第三列
第一列文本居中 第二列文本居右 第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPE ASCII HTML
Single backticks 'Isn't this fun?' ‘Isn’t this fun?’
Quotes "Isn't this fun?" “Isn’t this fun?”
Dashes -- is en-dash, --- is em-dash – is en-dash, — is em-dash

创建一个自定义列表

Markdown

Text-to-
HTML conversion tool

Authors

John
Luke

如何创建一个注脚

一个具有注脚的文本。2

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t &ThinSpace; . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

Mon 06 Mon 13 Mon 20 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图::

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五… 很好… 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接

长方形

圆角长方形

菱形

  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.2.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件或者.html文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. mermaid语法说明 ↩︎

  2. 注脚的解释 ↩︎

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/153095.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 网络编程初识和socket套接字[通俗易懂]

    网络的产生不同机器上的程序要通信,才产生了网络:凡是涉及到倆个程序之间通讯的都需要用到网络软件开发架构软件开发架构的类型:应用类、web类应用类:qq、微信、网盘、优酷这一类是属于需要安装的桌

  • Android http Request / Response ContentType

    Android http Request / Response ContentType客户端在进行http请求服务器的时候,需要告诉服务器请求的类型,服务器在返回给客户端的数据的时候,也需要告诉客户端返回数据的类型。这个类型就是 ContentType ,不同的ContentType会影响客户端/服务器所看到的效果。contentType:告诉服务器,我要发什么类型的数据  1、默认的ContentType为 text/html也就是网页格式.   

  • python计算最大公约数和最小公倍数_python求最大公约数和最小公倍数的方法介绍…

    python计算最大公约数和最小公倍数_python求最大公约数和最小公倍数的方法介绍…python求最大公约数和最小公倍数的方法介绍发布时间:2020-04-2810:42:38来源:亿速云阅读:114作者:小新今天小编给大家分享的是python求最大公约数和最小公倍数的方法介绍,相信很多人都不太了解,为了让大家更加了解python求最大公约数和最小公倍数的方法,所以给大家总结了以下内容,一起往下看吧。一定会有所收获的哦。python怎么求最大公约数和最小公倍数一、求最大公约数用…

  • 小白勿进!安卓版java游戏盒下载「建议收藏」

    小白勿进!安卓版java游戏盒下载「建议收藏」为什么要分库分表?首先回答一下为什么要分库分表,答案很简单:数据库出现性能瓶颈。用大白话来说就是数据库快扛不住了。数据库出现性能瓶颈,对外表现有几个方面:大量请求阻塞在高并发场景下,大量请求都需要操作数据库,导致连接数不够了,请求处于阻塞状态。SQL操作变慢如果数据库中存在一张上亿数据量的表,一条SQL没有命中索引会全表扫描,这个查询耗时会非常久。存储出现问题业务量剧增,单库数据量越来越大,给存储造成巨大压力。从机器的角度看,性能瓶颈无非就是CPU、内存、磁盘、网络这些,要解决性能瓶颈

  • samba文件共享服务配置过程_互联网共享文件夹

    samba文件共享服务配置过程_互联网共享文件夹一、Samba简介1.1概述SMB(ServerMessagesBlock,信息服务块)是一种在局域网上共享文件和打印机的一种通信协议,它为局域网内的不同操作系统的计算机之间提供文件及打印机等资源的共享服务。SMB协议是客户机/服务器型协议,客户机通过该协议可以访问服务器上的共享文件系统、打印机及其他资源。1.2samba与FTPftp的优缺点:优点:文件传输、应用层协议、可跨平台缺点:只能实现文件传输,无法实现文件系统挂载;无法直接修改服务器端文件Samba的特性:

  • 哈希算法是对称算法还是非对称算法_对称加密和非对称加密原理

    哈希算法是对称算法还是非对称算法_对称加密和非对称加密原理哈希算法和·Hmac算法

    2022年10月23日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号