树莓派3B+ 人脸识别(OpenCV)

树莓派3B+ 人脸识别(OpenCV)树莓派3B+人脸识别(OpenCV)相信大家都看了前面的OpenCV安装和人脸检测教程,有了基础后,现在我们正式进入重头戏——人脸识别的教程。注意:该教程面向python2.7+OpenCV2.4.9(官方源)其它版本需进行一些小的修改,文中会具体注明。1.生成人脸识别数据目录结构./data数据根目录./data/gener…

大家好,又见面了,我是你们的朋友全栈君。

树莓派3B+ 人脸识别(OpenCV)


相信大家都看了前面的OpenCV安装人脸检测教程,已经跃跃欲试,想要进行人脸识别了,现在我们正式进入重头戏——人脸识别 的教程。
注意:该教程面向python2.7+OpenCV2.4.9(官方源)
其它版本需进行一些小的修改,文中会具体注明。

1.生成人脸识别数据

目录结构
./data 数据根目录
./data/generate 自动生成的人脸数据
./data/datamap.csv 人脸数据对应数据
./data/Mengcheng 人物一文件夹
./data/Kaixin 人物二文件夹
./data/Mengying 人物三文件夹
(这里三个人物可自行修改,文件夹为人物名,里面存放图片)

dir

// python脚本,请保存为genrate.py
#!/usr/bin/env python
#coding=utf-8
import cv2
import os  
import sys

face_cascade=cv2.CascadeClassifier('/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml')

def makedir(path):
    path=path.strip().rstrip('/')
    if os.path.exists(path) is False:
        os.makedirs( path );

def generate(root_argv,dirname):
    subject_dir_path = os.path.join(root_argv, dirname)
    print 'seek:'+subject_dir_path
    count=0
    for filename in os.listdir(subject_dir_path): 
        if filename == ".directory":
            continue
        imgPath = os.path.join(subject_dir_path, filename)
        try:
            print 'read:'+imgPath
            img = cv2.imread(imgPath)
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            outdir=os.path.join(root_argv,'generate',dirname)
            makedir(outdir)
            faces=face_cascade.detectMultiScale(gray,1.3,5)
            for x,y,w,h in faces:
                f=cv2.resize(gray[y:y+h,x:x+w],(200,200))
                outPath=os.path.join(root_argv,'generate',dirname,'%s.pgm' % str(count))
                print 'write:'+ outPath
                cv2.imwrite(outPath, f)
                count+=1

        except:
            pass


if __name__ == '__main__':
    if len(sys.argv)==1:
        print ("USAGE: generate.py <人脸图片存放路径>")
        exit(0)

    root_argv=sys.argv[1]
    for dirname in os.listdir(root_argv):
        file_path = os.path.join(root_argv, dirname)  
        if os.path.isdir(file_path): 
            if dirname == 'generate':
                continue
            generate(root_argv,dirname)

在控制台执行python generate.py ./data即可自动生成人脸识别数据
生成后,请自行打开./data/generate/下生成人脸数据是否正常,如果不正常的,请清理掉,防止后续有干扰。如图:

这里写图片描述

2.生成人脸数据对应表

人脸数据生成了,还得有一个人物<->名称映射表,让机器知道人脸数据对应那个人物。

// python脚本,请保存为create_csv.py
#!/usr/bin/env python
#coding=utf-8
import sys
import os.path
#import Image
if __name__ == '__main__':
    if len(sys.argv) != 2:
        print "usage: create_csv.py <生成的人脸数据路径>"
        sys.exit(0)

    BASE_PATH=sys.argv[1]
    SEPARATOR=";"
    label = 0
    for dirpath, dirnames, filenames in os.walk(BASE_PATH): 
        for subdirname in dirnames:
            subject_path = os.path.join(dirpath, subdirname) 
            #print subject_path
            for filename in os.listdir(subject_path):
                image_filename = subject_path + "/"+ filename 
                #print(image_filename) 
                #img=Image.open(image_filename)
                ## img=img.resize((92,112))
                #img.show()
                abs_path = "%s/%s" % (subject_path, filename) 
                print("%s%s%d"%(abs_path,SEPARATOR, label))
                # print("%s"%(abs_path)) 
            label = label + 1

然后执行python create_csv.py ./data/generate/ > ./data/datamap.csv
打开生成的datamap.csv文件,检查对应关系(如图所示):

datamap.csv

这样,人脸数据就准备好了。

3.人脸识别

使用样图,使用树莓派摄像头获取图片。

// python脚本,请保存为facerec.py
#!/usr/bin/env python
#coding=utf-8
### Imports ###################################################################

import multiprocessing as mp
import cv2
import os
import sys
import time
import numpy as np


### Setup #####################################################################

resX = 640
resY = 480

# The face cascade file to be used
face_cascade = cv2.CascadeClassifier('/usr/share/opencv/lbpcascades/lbpcascade_frontalface.xml')

#三种识别算法
#model = cv2.createEigenFaceRecognizer()
model = cv2.createFisherFaceRecognizer()
#model = cv2.createLBPHFaceRecognizer()

t_start = time.time()
fps = 0


### Helper Functions ##########################################################

def normalize(X, low, high, dtype=None):
    """Normalizes a given array in X to a value between low and high."""
    X = np.asarray(X)
    minX, maxX = np.min(X), np.max(X)
    # normalize to [0...1].
    X = X - float(minX)
    X = X / float((maxX - minX))
    # scale to [low...high].
    X = X * (high-low)
    X = X + low
    if dtype is None:
        return np.asarray(X)
    return np.asarray(X, dtype=dtype)


def load_images(path, sz=None):
    c = 0
    X,y = [], []
    for dirname, dirnames, filenames in os.walk(path):
        for subdirname in dirnames:
            subject_path = os.path.join(dirname, subdirname)
            for filename in os.listdir(subject_path):
                try:
                    filepath = os.path.join(subject_path, filename)
                    if os.path.isdir(filepath):
                        continue
                    img = cv2.imread(os.path.join(subject_path, filename), cv2.IMREAD_GRAYSCALE)
                    if (img is None):
                        print ("image " + filepath + " is none")
                    else:
                        print (filepath)
                    # resize to given size (if given)
                    if (sz is not None):
                        img = cv2.resize(img, (200, 200))

                    X.append(np.asarray(img, dtype=np.uint8))
                    y.append(c)
                # except IOError, (errno, strerror):
                # print ("I/O error({0}): {1}".format(errno, strerror))
                except:
                    print ("Unexpected error:", sys.exc_info()[0])
                    raise
            print (c)
            c = c+1


    print (y)
    return [X,y]

def get_faces( img ):

    gray = cv2.cvtColor( img, cv2.COLOR_BGR2GRAY )
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    return faces, img, gray

def draw_frame( faces, img, gray ):

    global xdeg
    global ydeg
    global fps
    global time_t

    # Draw a rectangle around every face
    for ( x, y, w, h ) in faces:

        cv2.rectangle( img, ( x, y ),( x + w, y + h ), ( 200, 255, 0 ), 2 )
        #-----rec-face
        roi = gray[x:x+w, y:y+h]
        try:
            roi = cv2.resize(roi, (200, 200), interpolation=cv2.INTER_LINEAR)
            params = model.predict(roi)
            sign=("%s %.2f" % (names[params[0]], params[1]))
            cv2.putText(img, sign, (x, y-2), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )
            if (params[0] == 0):
                cv2.imwrite('face_rec.jpg', img)
        except:
            continue


    # Calculate and show the FPS
    fps = fps + 1
    sfps = fps / (time.time() - t_start)
    cv2.putText(img, "FPS : " + str( int( sfps ) ), ( 10, 15 ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )

    cv2.imshow( "recognize-face", img )


### Main ######################################################################

if __name__ == '__main__':

    camera = cv2.VideoCapture(0)
    camera.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH,resX)  
    camera.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT,resY) 

    pool = mp.Pool( processes=4 )

    # -----------init-rec----------
    # 人名要与datamap.csv里面的对应,不要弄错了顺序
    names = ['Mengying', 'Kaixin', 'Mengcheng']
    if len(sys.argv) < 2:
        print ("USAGE: facerec.py <人脸数据存放路径> [<数据对应表>]")
        sys.exit()

    [X,y] = load_images(sys.argv[1])
    y = np.asarray(y, dtype=np.int32)

    if len(sys.argv) == 3:
        out_dir = sys.argv[2]

    model.train(np.asarray(X), np.asarray(y))
    # ------init finish---------

    read, img = camera.read()
    pr1 = pool.apply_async( get_faces, [ img ] )   
    read, img = camera.read()
    pr2 = pool.apply_async( get_faces, [ img ] )  
    read, img = camera.read() 
    pr3 = pool.apply_async( get_faces, [ img ] )   
    read, img = camera.read()
    pr4 = pool.apply_async( get_faces, [ img ] )    

    fcount = 1
    while (True):
        read, img = camera.read()

        if   fcount == 1:
            pr1 = pool.apply_async( get_faces, [ img ] )
            faces, img, gray=pr2.get()
            draw_frame( faces, img, gray )

        elif fcount == 2:
            pr2 = pool.apply_async( get_faces, [ img ] )
            faces, img, gray=pr3.get()
            draw_frame( faces, img, gray )

        elif fcount == 3:
            pr3 = pool.apply_async( get_faces, [ img ] )
            faces, img, gray=pr4.get()
            draw_frame( faces, img, gray )

        elif fcount == 4:
            pr4 = pool.apply_async( get_faces, [ img ] )
            faces, img, gray=pr1.get()
            draw_frame( faces, img, gray )
            fcount = 0

        fcount += 1

        if cv2.waitKey(1000 // 12) & 0xff == ord("q"):
            break

    camera.release()
    cv2.destroyAllWindows()

注意:这里对于OpenCV3的版本需要修改如下内容:
cv2.createEigenFaceRecognizer()
—>cv2.face.createEigenFaceRecognizer()
cv2.rectangle()
—>img=cv2.rectangle()


然后执行python facerec.py ./data/generate ./data/datamap.csv,此时,摄像头会自动打开,在显示屏上可以看到画面,如图:

result

如果想测试得更理想,应选择脸型差别比较大的来测试,其次是素材高清一些,摄像头成像清晰一些。

4.扩展资料

对于OpenCV有三种人脸识别方法,它们分别基于三种不同的算法:Eigenfaces、Fisherfaces和Local Binary Pattern Histogram(LBPH)。

首先,所有的方法都有类似的过积,即都使用了分好类的训练数据集(人脸数据库,每 个人都有很多样本)来进行“训练”,对图像或视频中检测到的人脸进行分析,并从两方面来确定:是否识别到目标,目标真正被识别到的置信度的度量,这也称为置信度评分。

  • Eigenfaces是通过PCA来处理的。PCA是计算机视觉中提到最多的数学概。PCA的本质是识别某个训练集上(比如人脸数据库)的主成分,并计算出训练集(图像或帧中检测到的人脸)相对于数据库的发散程度,并输出一个值。该值越小,表明人脸数据库和检测到的人脸之间差别就越小;0值表示完全匹配。

  • Fisherfaces是从PCA衍生并发展起来的概念,它采用更复杂的逻辑。尽管计算更加密集,但比Eigenfaces更容易得到准确的效果。

  • LBPH粗略地(在非常高的层次上)将检测到的人脸分成小单元,并将其与模型中的对应单元进行比较,对每个区域的匹配值产生一个直方图。由于这种方法的灵活性.LBPH是唯一允许模型样本人脸和检测到的人脸在形状、大小上可以不同的人脸识别算法。个人认为这是最准确的算法,但是每个算法都有其长处和缺点。

5.扩展书籍

看较多网友对此文章有较多疑问,但我也没有较深入去研究具体原理。故无法对你们的提问作出准确的解答,在此推荐一本书给大家,相信能化解你们的疑问![本文章代码也有部分来自此书]
OpenCV 3计算机视觉 Python语言实现(第二版)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/152919.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • eclipse中svn插件的安装与使用「建议收藏」

    eclipse中svn插件的安装与使用「建议收藏」来源:https://www.cnblogs.com/zdfjf/p/5038155.html转自博客园:http://www.cnblogs.com/duanxz/p/3334660.html一.    eclipse中svn插件的安装InstallSubclipseinEclipse3.X(参考官网http://subclipse.tigris.org/)

  • OpenCV 如何保存图片「建议收藏」

    OpenCV 如何保存图片「建议收藏」里主要说明两种图片格式cv::Mat以及IplImage如果图片是以Mat类型的格式表示的话,那么保存图片则用imwrite()函数举例如下:constchar*path;path=”E:\\Data\\right\\right.bmp”imwrite(path,riFrame);//riFrame为当前帧如果图片是以IplImage类型的格式表示的话,

  • android图片文字识别器,图片转换文字识别器[通俗易懂]

    android图片文字识别器,图片转换文字识别器[通俗易懂]图片转换文字识别器是一款非常好用的功能非常强的图片转换文字手机工具,在图片转换文字识别器软件上有着非常多的功能,用户可以使用这款软件在我们工作中解决很多的问题和麻烦,是一款办公学习必备神器,感兴趣的朋友赶紧下载图片转换文字识别器开始使用吧!图片转换文字识别器软件介绍这款软件的使用方式也是超级简单的只要你想打印文字的图片上传就可以了上传之后,他经过简单的识别,只需要短短几秒之内就可以把你想要打印的文…

  • js删除数组中的一个元素_js数组包含某个元素

    js删除数组中的一个元素_js数组包含某个元素目录第一种:删除最后一个元素pop删除slice删除splice删除for删除length删除第二种:删除第一个元素shift删除slice删除splice删除第三种:删除数组中某个指定下标的元素splice删除for删除第四种:删除数组中某个指定元素splice删除filter删除forEach、m…

  • 初学者python详细安装步骤_编程工具

    初学者python详细安装步骤_编程工具前言:随着人工智能的快速发展,python语言越来越受大家的欢迎,目前Python官网已经更新到了最新版Python3.7.2,这里详细介绍python安装,希望会对大家有所帮助,欢迎留言提问。

  • heap和stack区别Java_Java中Heap与Stack的区别

    heap和stack区别Java_Java中Heap与Stack的区别1)Heap是Stack的一个子集.——扩展—>从内存观点考虑。优化2)Stack存取速度仅次于寄存器,存储效率比heap高,可共享存储数据,可是其中数据的大小和生存期必须在运行前肯定。spa3)Heap是运行时可动态分配的数据区,从速度看比Stack慢,Heap里面的数据不共享,大小和生存期均可以在运行时再肯定。指针4)new关键字是运行时在Heap里面建立对象,每ne…

    2022年10月24日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号