Torchvision transforms 总结

Torchvision transforms 总结一.torchvision.transformsTransfoms是很常用的图片变换方式,可以通过compose将各个变换串联起来**1.classtorchvision.transforms.Compose(transforms)**这个类将多个变换方式结合在一起参数:各个变换的实例对象举例:transforms.Compose([ transforms.Center…

大家好,又见面了,我是你们的朋友全栈君。

一.torchvision.transforms

Transfoms 是很常用的图片变换方式,可以通过compose将各个变换串联起来
1. class torchvision.transforms.Compose (transforms)
这个类将多个变换方式结合在一起
参数:各个变换的实例对象
举例:

transforms.Compose([
			transforms.CenterCrop(10),
			transforms.ToTensor(), 
			])

二. 在PIL格式图片上的转换

1.class torchvision.transforms.CenterCrop(size)
剪切并返回PIL图片上中心区域
参数:size (序列或者整型) — 输出的中心区域的大小。如果输入的size是整型而不是类似于 (h,w)的序列,那么将会转成类似(size, size)的序列。

2.class torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0)
随机改变图片的亮度、对比度和饱和度
参数:

  • brightness(亮度,float类型)——调整亮度的程度,亮度因子(brightness_factor)从 [max(0,1-brightness), 1+brightness] 中均匀选取。
  • contrast(对比度,float类型)——调整对比度的程度,对比度因子(contrast_factor)从 [max(0,1-contrast),1+contrast] 中均匀选取。
  • saturation(饱和度,float类型)——调整饱和度的程度,饱和度因子(saturation_factor) [max(0,1-saturation),1+saturation] 中均匀选取。
  • hue(色相,float类型) —— 调整色相的程度,色相因子(hue_factor)从 [-hue,hue] 等均匀选择, 其中hue的大小为 [0, 0.5]

对比度: 对比度指不同颜色之间的差别。对比度越大,不同颜色之间的反差越大,所谓黑白分明,对比度过大,图像就会显得很刺眼。对比度越小,不同颜色之间的反差就越小。
亮度: 亮度是指照射在景物或者图像上光线的明暗程度,图像亮度增加时,会显得刺眼或耀眼,亮度越小,会显得灰暗。
色相: 色相就是颜色,调整色相就是调整景物的颜色。
饱和度: 饱和度指图像颜色的浓度。饱和度越高,颜色越饱满,所谓的青翠欲滴的感觉。饱和度越低,颜色就会越陈旧,惨淡,饱和度为0时,图像就为灰度图像。

3. class torchvision.transforms.FiveCrop(size)
将给定的PIL图像剪裁成四个角落区域和中心区域
注意: 这个变换返回的是一个图像元组(tuple of images), 因此其输出跟输出的数量会不匹配。
参数: size(序列或者整型) —— 需要返回的剪裁区域的尺寸。如果输入的是整型,那么会被转成(size,size)序列。

例子:

transform = Compose([
	FiveCrop(size),
	Lambda(lambda crops:torch.stack([ToTensor()(crop) for crop in crops]))  #return a 4D tensor
])
#in your test loop you can do the following:
input ,target = batch #input is a 5d tensor, target is 2d 
bs, ncrops,c ,h ,w = input.size()   
result = model(input.view(-1,c,h,w))   #fuse batch size and ncrops  转成(bs*ncrops, c, h , w)
result_avg = result.view(bs, ncrops, -1).mean(1)      #avg over crops 转成(bs,ncrops, c*h*w)

4. class torchvision.transforms.Grayscale(num_output_channels=1)
将图片转成灰度图
参数: num_output_channels(int) —— (1或者3),输出图片的通道数量
返回: 输入图片的灰度图,如果num_output_channels=1, 返回的图片为单通道. 如果 num_output_channels=3, 返回的图片为3通道图片,且r=g=b
返回类型:PIL图片类型

5. class torchvision.transforms.Pad(padding, fill=0, padding_mode=‘constant’)
对给定的PIL图像的边缘进行填充,填充的数值为给定填充数值
参数:

  • padding(int或者tuple)——填充每一个边界。如果只输入了一个int类型的数值,那么这个数值会被用来填充所有的边界。如果输入的是tuple且长度为2,那么俩个数值分别被用于填充left/right 和 top/bottom。如果输入的数组为4,那么分别被用来填充left, top ,right 和 bottom边界。
  • fill (int 或者 tuple) —— 填充的像素的数值为fill。默认为0,如果输入的元组的长度为3,那么分别被用来填充R,G,B通道。这个数值当padding_mode 等于‘constant’ 的时候才会被使用。
  • padding_mode (string) —— 填充的类型,必须为:constant, edge, reflect or symmetric,默认为 constant.
    constant: 以常量值进行填充,常量值由 fill 确定。
    edge: 用图片边界最后一个值进行填充
    reflect: pads with reflection of image without repeating the last value on the edge (这句不知怎么翻译,看下面例子)
    例子: 用俩个元素填充[1,2,3,4], 将会返回[3,2,1,2,3,4,3,2]
    symmetric: pads with reflection of image repeating the last value on the edge
    例子:用俩个函数元素填充 [1,2,3,4],将会返回[2,1,1,2,3,4,4,3]

6. class torchvision.transforms.RandomAffine(degrees, translate=None, scale=None)
保持中心不变的对图片进行随机仿射变化
参数:添加链接描述

  • degree (旋转,squence或者float或者int) —— 旋转的角度范围。如果角度是数值而不是类似于(min,max)的序列,那么将会转换成(-degree, +degree)序列。设为0则取消旋转。
  • transalate (平移,tuple,可选) —— 数组,其中元素为代表水平和垂直变换的最大绝对分数。例如translate=(a,b),那么水平位移数值为从 -image_widtha<dx<image_widtha 随机采样的,同时垂直位移是从 -img_heightb<dy<image_heightb 随机采样的。默认情况下没有平移。
  • scale (缩放,tuple, 可选) —— 缩放因子区间。若scale=(a,b), 则缩放的值在a<=scale<=b 随机采样。默认情况下没有缩放。
  • shear (错切,sequence 或者 float 或者 int, 可选) —— 错切的程度。如果错切的程度是一个值,那么将会转换为序列即(—degree, +degree)。默认情况下不使用错切。
  • resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, 可选)。
  • fillcolor(整型) —— 可选择的在输出图片中填充变换以外的区域。(Pillow>=5.0.0)

7.torchvision.transforms.RandomApply(transforms, p=0.5)
随机选取变换中(各种变换存储在列表中)的其中一个,同时给定一定的概率
参数: 
变换(list或者tuple) —— 转换的列表
p (float 类型) —— 概率,选取某个变化需要的概率

8.transforms.RandomSizedCrop() RandomApply() RandomChoice() RadomCrop RamdomGrayscale() RamdomHorizontalFlip(p=0.5) RamdomRotation() … 还有各种Random,详细请查看torch.transforms

9.torchvision.transforms.Resize(size,interpolation=2)
将输入的PIL图片转换成给定的尺寸的大小
参数:

  • size(sequence 或者 int) —— 需要输出的图片的大小。如果size是类似于(h,w)的序列,输出的尺寸将会跟(h,w)一致。如果size是整型,图片较小的边界将会被置为这个尺寸。例如,如果height->width, 图片将会被置为 (size*height/width, size)
  • Interpolation (int, 可选) —— 默认为 PIL.Image.BILINEAR

三. 在torch.Tensor上的转换

1. class torchvision.transforms.Normalize(mean,std)
用均值和标准差对张量图像进行标准化处理。给定n通道的均值(M1, … , Mn) 和标准差(S1, … ,Sn), 这个变化将会归一化根据均值和标准差归一化每个通道值。例如,input[channel] = (input[channel]-mean[channel])/std(channel)
参数:

  • mean (squence) —— 每个通道的均值
  • std (sequence) —— 每个通道的标准差

__call__(tensor) 参数:tensor(Tensor) , 尺寸为(C,H,W)的图片将会被归一化 ; 返回:归一化后的Tensor类型图片 ; 返回类型:Tensor

四. 类型转换变换 (Conversion Transforms)

1. class torchvision.transforms.ToPILImage(mode=None)
将tensor类型或者ndarray转换成PIL图片
将 CxHxW大小的torch.*Tensor或者HxWxC 大小的numpy 矩阵转成PIL图片
参数:如果model为None,那么如果输入有三个通道,那么mode为RGB; 如果input有4个通道,mode为RGBA. 如果输入是1通道,mode为数据类型,如int, float, short

__call__(pic) 参数:pic (Tensor或者numpy.ndarray类型的) —— 转换成PIL图片;  返回PIL图片; 返回类型为PIL类型

2. torchvision.transforms.ToTensor
将PIL图片或者numpy.ndarray转成Tensor类型的
将PIL图片或者numpy.ndarray(HxWxC) (范围在0-255) 转成torch.FloatTensor (CxHxW) (范围为0.0-1.0)

__call__(pic) 参数:pic(PIL图片或者numpy.ndarray) —— 将图片转成向量; 返回Tensor类型的图片

五. 一般变换 (Generic Transforms)

1. torchvision.transforms.Lambda(lambd)
使用用户定义的lambda作为转换
参数:lambd(function) —— 用Lambda/funtion 作为变换

2. torchvision.transforms.functional.adjust_brightness(img, brightness_factor)
调整图片的亮度
参数:

  • img(PIL 图片)——PIL图片
  • brightness_factor(float)——亮度调整程度。不能为负数, 0代表黑色图片,1代表原始图片,2代表增加了2个因子的亮度。
  • returns: 返回调整完的图片

3.torchvision.transforms.functional.adjust_contrast(img,contrast_factor)
调整图片的对比度
参数:

  • img —— 需要调整的PIL 图片
  • constrast_factor(float) —— 调整对比度的程度。可以是非负的数。0为灰度图,1为原图,2为增加图片2个对比因子的图片。
  • returns —— 返回调整后的对比度图片

4. torchvison.transforms.function.adjust_gamma(img, gamma, gain=1)
对图片进行gamma校正,gamma校正详情
I o u t = 255 ∗ g a i n ∗ ( I i n / 255 ) γ I_{out}=255*gain*(I_{in}/255)^{\gamma} Iout=255gain(Iin/255)γ

参数:

  • img(PIL图片)——需要调整的PIL图片
  • gamma (float类型)——非零实数,公式中的 γ \gamma γ也是非零实数。gamma大于1使得阴影部分更暗,gamma小于1使得暗的区域亮些。
  • gain(float) —— 常量乘数

5.torchvision.transforms.functional.ajust_hue (img,hue_factor)
调整图片的色相
通过将图像转换为HSV来调整图像的色调,并在色调通道(H)中循环移动强度,然后将图像转换回原始图像模式。
色相因子是H通道平移量,其必须在区间[-0.5,0.5]中。
参数

  • img (PIL 图片) —— 需要调整的PIL图片
  • hue_factor (float类型) —— 色相通道平移的量,必须在[-0.5,0.5]之间。0.5和-0.5分别代表在HSV空间中正负方向完全相反的色相通道。0代表没有平移。

5. tochvision.transforms.functional.adjust_saturation(img, hue_factor)
调整图片的颜色饱和度
参数:

  • img (PIL图片)——需要调整的PIL图片
  • 饱和度因子(float类型)——调整饱和度的程度。0将会输出黑白图片,1将会输出原始图片,2将会增强2个因子的饱和度。
  • 返回调整后的图片。

6. torchvision.transforms.functional.affine(img, angle, translate, scale, shear, resample=0, fillcolor=None)
对图片进行放射变换,保持中心不变。
参数:

  • img (PIL图片)——需要变换的PIL图片
  • angle(float 或者 int)——旋转的的角度,角度范围为 (-180,180), 正方向为顺时针方向。
  • translate(list 或者 tuple)——水平或者垂直平移
  • scale(float)——总体缩放
  • shear(错切,float)——错切的角度位于(-180,180),顺时针方向。
  • resample(这个有点看不懂,应该比较少用到——PIL.Image.NEAREST or PIL.Image.BILINEAR or PIL.Image.BICUBIC, optional
  • fillcolor (int) —— 填充输出图片中超过变换的区域(Pillow>=5.0)

7.torchvision.transforms.functional.crop(img,i,j,h,w)
剪裁给定的PIL图片
参数:

  • img(PIL图片)——被剪裁的图片
  • (i, j) ——左上角图片坐标
  • (h,w)——剪裁的图片的高和宽
    returns: 返回剪彩的图片

8. torchvision.transforms.functional.normalize(tensor, mean, std)
根据给定的标准差和方差归一化tensor图片
参数:

  • tensor(Tensor)—— 形状为(C,H,W)的Tensor图片
  • mean(squence) —— 每个通道的均值,序列
  • std (sequence) —— 每个通道的标准差,序列
    返回:返回归一化后的Tensor图片。

9.
torchvision.transforms.functional.pad(img, padding, fill=0, padding_mode=‘constant’)、torchvision.transforms.functional.resize(img, size, interpolation=2)、
torchvision.transforms.functional.rotate(img, angle, resample=False, expand=False, center=None)、torchvision.transforms.functional.to_grayscale(img, num_output_channels=1)

等均与上述函数类似,这里不再重复。

10.
torchvision.transforms.functional.to_pil_image(pic, mode=None) 将tensor或者numpy.ndarray转成PIL图片
torchvision.transforms.functional.to_tensor(pic) 将PIL图片或者numpy.ndarray转成tensor

参考:
https://pytorch.org/docs/master/torchvision/transforms.html?highlight=torchvision%20transforms

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/152598.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • route add命令实例_cmd route

    route add命令实例_cmd route命令作用routeadd添加路由delete删除路由change更改现有路由print打印路由删除静态路由地址routedelete130.0.0.0mask255.0.0.0添加静态路由地址routeadd130.0.0.0MASK255.0.0.0134.32.80.1METRIC10意思是:所有需要发往130.0.0.0地址段的IP数据包,全部由路径134.32.80.1转发其中,路由跳数是可以省略的参数当通往…

  • Hibernate与 MyBatis的比较

    Hibernate与 MyBatis的比较最近做了一个Hibernate与MyBatis的对比总结,希望大家指出不对之处。第一章     Hibernate与MyBatisHibernate 是当前最流行的O/Rmapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/Rmapping框架。目前属于apache的一个子项目。MyBatis 参考资料官网:ht

    2022年10月22日
  • java可视化编程-eclipse安装windowbuilder插件「建议收藏」

    一直做在安卓用xml作界面,对于java的控件不熟悉,也不习惯用代码做UI尤其是布局。找了一下发现可以安装windowbuilder来实现java的可视化编程,但是很多资料里的连接都失效了。刚自己弄完比较熟悉,总结一下希望能帮到。我是直接在线安装的windowbuilder一.找到对应版本的windowbuilder打开这个链接:http://www.eclipse.org/w

  • MySQL——SQL练习题

    MySQL——SQL练习题

  • excel 同时冻结首列和首行_word怎么一列求平均值

    excel 同时冻结首列和首行_word怎么一列求平均值之前ytkah只知道excel可以冻结首行或首列,但还不清楚如何同时冻结excel首行和首列,后面看到小C的报表,问了他才明白怎么操作。首先,我们先把选中B2单元格,点击导航菜单的“视图”-“冻

  • asp.net repeater_asp.net core

    asp.net repeater_asp.net coreasp.net在Repeater嵌套的Repeater中使用复选框来自森大科技官方博客http://www.cnsendblog.com/index.php/?p=109.aspx文件中:&lt;%–顶层Repeater–%&gt;&lt;asp:RepeaterID=“rptChannel”runat=“server”&gt;&lt;%#Eval(“ChannelName”…

    2022年10月13日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号