海量数据处理之Bloom Filter详解

海量数据处理之Bloom Filter详解海量数据处理之BloomFilter详解 前言   本博客内曾已经整理过十道海量数据处理面试题与十个方法大总结。接下来,本博客内会重点分析那些海量数据处理的方法,并重写十道海量数据处理的面试题。如果有任何问题,欢迎不吝指正。谢谢。一、什么是BloomFilter   BloomFilter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集

大家好,又见面了,我是你们的朋友全栈君。

海量数据处理之Bloom Filter详解

 

前言

    本博客内曾已经整理过十道海量数据处理面试题与十个方法大总结。接下来,本博客内会重点分析那些海量数据处理的方法,并重写十道海量数据处理的面试题。如果有任何问题,欢迎不吝指正。谢谢。

一、什么是Bloom Filter

    Bloom Filter是一种空间效率很高的随机数据结构,它的原理是,当一个元素被加入集合时,通过K个Hash函数将这个元素映射成一个位阵列(Bit array)中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检索元素一定不在;如果都是1,则被检索元素很可能在。这就是布隆过滤器的基本思想。

    但Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。

    有人可能想知道它的中文叫法,倒是有被译作称布隆过滤器。该不该译,译的是否恰当,由诸君品之。下文之中,如果有诸多公式不慎理解,也无碍,只作稍稍了解即可。

1.1、集合表示和元素查询

    下面我们具体来看Bloom Filter是如何用位数组表示集合的。初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0

海量数据处理之Bloom Filter详解

    为了表达S={x1, x2,…,xn}这样一个n个元素的集合,Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,…,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置hi(x)就会被置为11ik)。注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位,即第二个“1“处)。   

海量数据处理之Bloom Filter详解

 

    在判断y是否属于这个集合时,我们对y应用k次哈希函数,如果所有hi(y)的位置都是11ik),那么我们就认为y是集合中的元素,否则就认为y不是集合中的元素。下图中y1就不是集合中的元素(因为y1有一处指向了“0”位)。y2或者属于这个集合,或者刚好是一个false positive

海量数据处理之Bloom Filter详解

1.2、错误率估计

    前面我们已经提到了,Bloom Filter在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设kn<m且各个哈希函数是完全随机的。当集合S={x1, x2,…,xn}的所有元素都被k个哈希函数映射到m位的位数组中时,这个位数组中某一位还是0的概率是:

海量数据处理之Bloom Filter详解

    其中1/m表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的),(1-1/m)表示哈希一次没有选中这一位的概率。要把S完全映射到位数组中,需要做kn次哈希。某一位还是0意味着kn次哈希都没有选中它,因此这个概率就是(1-1/m)的kn次方。令p = e-kn/m是为了简化运算,这里用到了计算e时常用的近似:

海量数据处理之Bloom Filter详解

 

令ρ为位数组中0的比例,则ρ的数学期望E(ρ)= p’。在ρ已知的情况下,要求的错误率(false positive rate)为:

海量数据处理之Bloom Filter详解

(1-ρ)为位数组中1的比例,(1-ρ)k就表示k次哈希都刚好选中1的区域,即false positive rate。上式中第二步近似在前面已经提到了,现在来看第一步近似。p’只是ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值。M. Mitzenmacher已经证明[2] ,位数组中0的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将pp’代入上式中,得:

   

海量数据处理之Bloom Filter详解

海量数据处理之Bloom Filter详解

相比p’f’,使用pf通常在分析中更为方便。

1.3、最优的哈希函数个数

    既然Bloom Filter要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到0的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的0就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。

    先用pf进行计算。注意到f = exp(k ln(1 − e−kn/m)),我们令g = k ln(1 − e−kn/m),只要让g取到最小,f自然也取到最小。由于p = e-kn/m,我们可以将g写成

海量数据处理之Bloom Filter详解

    根据对称性法则可以很容易看出当p = 1/2,也就是k = ln2· (m/n)时,g取得最小值。在这种情况下,最小错误率f等于(1/2)k (0.6185)m/n。另外,注意到p是位数组中某一位仍是0的概率,所以p = 1/2对应着位数组中0和1各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。

    需要强调的一点是,p = 1/2时错误率最小这个结果并不依赖于近似值pf。同样对于f’ = exp(k ln(1 − (1 − 1/m)kn))g’ = k ln(1 − (1 − 1/m)kn)p’ = (1 − 1/m)kn,我们可以将g’写成

海量数据处理之Bloom Filter详解

同样根据对称性法则可以得到当p’ = 1/2时,g’取得最小值。

1.4、位数组的大小

    下面我们来看看,在不超过一定错误率的情况下,Bloom Filter至少需要多少位才能表示全集中任意n个元素的集合。假设全集中共有u个元素,允许的最大错误率为є,下面我们来求位数组的位数m

    假设X为全集中任取n个元素的集合,F(X)是表示X的位数组。那么对于集合X中任意一个元素x,在s = F(X)中查询x都能得到肯定的结果,即s能够接受x。显然,由于Bloom Filter引入了错误,s能够接受的不仅仅是X中的元素,它还能够є (u – n)false positive。因此,对于一个确定的位数组来说,它能够接受总共n + є (u – n)个元素。在n + є (u – n)个元素中,s真正表示的只有其中n个,所以一个确定的位数组可以表示

海量数据处理之Bloom Filter详解

个集合。m位的位数组共有2m个不同的组合,进而可以推出,m位的位数组可以表示

   

海量数据处理之Bloom Filter详解

个集合。全集中n个元素的集合总共有

   

海量数据处理之Bloom Filter详解

个,因此要让m位的位数组能够表示所有n个元素的集合,必须有

   

海量数据处理之Bloom Filter详解

即:

   

海量数据处理之Bloom Filter详解

上式中的近似前提是nєu相比很小,这也是实际情况中常常发生的。根据上式,我们得出结论:在错误率不大于є的情况下,m至少要等于n log2(1/є)才能表示任意n个元素的集合。

 

上一小节中我们曾算出当k = ln2· (m/n)时错误率f最小,这时f = (1/2)k= (1/2)mln2 / n。现在令fє,可以推出

海量数据处理之Bloom Filter详解

这个结果比前面我们算得的下界n log2(1/є)大了log2e 1.44倍。这说明在哈希函数的个数取到最优时,要让错误率不超过єm至少需要取到最小值的1.44倍。

1.5、概括

    在计算机科学中,我们常常会碰到时间换空间或者空间换时间的情况,即为了达到某一个方面的最优而牺牲另一个方面。Bloom Filter在时间空间这两个因素之外又引入了另一个因素:错误率。在使用Bloom Filter判断一个元素是否属于某个集合时,会有一定的错误率。也就是说,有可能把不属于这个集合的元素误认为属于这个集合(False Positive),但不会把属于这个集合的元素误认为不属于这个集合(False Negative)。在增加了错误率这个因素之后,Bloom Filter通过允许少量的错误来节省大量的存储空间。

    自从Burton Bloom70年代提出Bloom Filter之后,Bloom Filter就被广泛用于拼写检查和数据库系统中。近一二十年,伴随着网络的普及和发展,Bloom Filter在网络领域获得了新生,各种Bloom Filter变种和新的应用不断出现。可以预见,随着网络应用的不断深入,新的变种和应用将会继续出现,Bloom Filter必将获得更大的发展。

二、适用范围

    可以用来实现数据字典,进行数据的判重,或者集合求交集 

三、基本原理及要点

    对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这 个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 

    还有一个比较重要的问题,如 何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况 下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应 该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 

    注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 
 

四、扩展

    Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。 
 

五、问题实例

    给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢? 

根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。 现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。 



参考文献及推荐阅读

  1. http://blog.csdn.net/jiaomeng/article/details/1495500
  2. http://blog.redfox66.com/post/2010/09/24/mass-data-topic-1-start.aspx
  3. 维基百科上关于布隆过滤器的介绍:http://zh.wikipedia.org/zh-cn/%E5%B8%83%E9%9A%86%E8%BF%87%E6%BB%A4%E5%99%A8
  4. 海量数据处理利器之Bloom Filter:http://www.dbafree.net/?p=36
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/152444.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • python操作mysql数据库第三方库_python与数据库连接的代码

    python操作mysql数据库第三方库_python与数据库连接的代码MySQL系列–4.使用Python3访问数据库

  • EJB初步学习

    EJB初步学习 今天简单学习了传说中的EJB,首先总的感觉,就是他的最重要的一个特点吧,就是能够使远程用户访问到本地或是服务器上的资源服务器。打个比方吧,传统的,还记得我们的第一个JAVA项目吧,那是个简单的对数据库增删改查的操作,用简单的界面来显示数据。那么当我们把这个项目打包发布之后,事必要把你自己的数据库也贡献出去,你做的软件在进行增删改查时也就只能对你机子上的一个数据库,别人如果想要对你这个数据库进

  • 算法(一)时间复杂度「建议收藏」

    算法(一)时间复杂度「建议收藏」算法很重要,但是由于做移动开发并不经常用到,所以很多同学早就将算法打了个大礼包送还给了老师了,况且很多同学并没有学习过算法。这个系列就让对算法头疼的同学能快速的掌握基本的算法。过年放假阶段玩了会游戏NBA2K17的生涯模式,没有比赛的日子也都是训练,而且这些训练都是自发的,没有人逼你,从早上练到晚上,属性也不涨,但是如果日积月累,不训练和训练的人的属性值就会产生较大差距。这个突然让我意识到

  • 直方图均衡化和图像平滑 实验报告

    直方图均衡化和图像平滑 实验报告

  • 压缩文件密码暴力破解——cRARk使用方法

    压缩文件密码暴力破解——cRARk使用方法cRARk使用方法压缩文件如果忘记密码就需要使用暴力破解的方法进行破解,因为使用了加密的手段,是无法绕过密码验证的。cRARk是一款开源的功能强大的rar,7z类压缩软件的破解工具,支持GPU加速。官网地址目前有命令行版本和windows的GUI版本。使用方法在官网下载命令行版本GUI版本注意:GUI版本必须有命令行版本下才能运行GUI使用命令行版本下载解压,提示需要输入密码,但是实际上密码为空。或者为UTF-16。(crark55.rar)然后解压GUI版本,里面只有一个可运

  • 在Ubuntu 18.04上编译Linux内核

    在Ubuntu 18.04上编译Linux内核一、环境说明编译环境我选择了Ubuntu18.04的虚拟机,内核截止2018-10-14最新版为4.18.14,笔者即将编译这个版本请确保磁盘空间足够,笔者之前20G编译到最后空间不足,还得重来如果你想要查看您的空间大小或者扩充磁盘,请查看我的另一篇文章https://blog.csdn.net/qq_36290650/article/details/83057832二、编译步骤…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号