使用Matlab对数据归一化

使用Matlab对数据归一化前言在使用机器学习做分类和回归分析时,往往需要对训练和测试数据首先做归一化处理。这里就对使用MATLAB对数据进行归一化方法做一个小总结。为什么进行归一化一般做机器学习应用的时候大部分时间是花费在特征处理上,其中很关键的一步就是对特征数据进行归一化。关于为什么进行归一化处理维基百科给出的解释是:1)归一化后加快了梯度下降求最优解的速度;2)归一化有可能提高精度。具体介绍:https://w…

大家好,又见面了,我是你们的朋友全栈君。

前言

在使用机器学习做分类和回归分析时,往往需要对训练和测试数据首先做归一化处理。这里就对使用MATLAB对数据进行归一化方法做一个小总结。

为什么进行归一化

一般做机器学习应用的时候大部分时间是花费在特征处理上,其中很关键的一步就是对特征数据进行归一化。关于为什么进行归一化处理维基百科给出的解释是:1)归一化后加快了梯度下降求最优解的速度;2)归一化有可能提高精度。
具体介绍:https://www.cnblogs.com/davidwang456/articles/9729746.html

使用MATLAB归一化

对于模式识别或者其他统计学来说,训练数据和测试数据应该是每一列是一个样本,每一行是多个样本的同一维,即对于一个M*N的矩阵来说,样本的维度是M,一共N列N个样本。而对数据归一化也应该是对同一维的数据进行归一化。MATLAB提供了归一化函数mapminmax,其主要调用形式有:

1. [Y,PS] = mapminmax(X,YMIN,YMAX)
2. [Y,PS] = mapminmax(X,FP)
3. Y = mapminmax('apply',X,PS)
4. X = mapminmax('reverse',Y,PS)

对于1和2的调用形式来说,X是预处理的数据,Ymin和Ymax是期望的每一行的最小值与最大值,FP是一个结构体成员主要是FP.ymin, FP.ymax.这个结构体就可以代替Ymin和Ymax,1和2的处理效果一样,只不过参数的带入形式不同。不设置YMIN 和YMAX,归一化范围为0~1。
示例:

x=[2,3,4,5,6;7,8,9,10,11];
[Y,PS] = mapminmax(x,0,1);
fp.ymin=0;
fp.ymax=1;
[Y,PS] = mapminmax(x,fp);

结果:

0	0.250000000000000	0.500000000000000	0.750000000000000	1
0	0.250000000000000	0.500000000000000	0.750000000000000	1

而对于3式,在模式识别或者统计学里,PS是训练样本的数据的映射,即PS中包含了训练数据的最大值和最小值,式中的X是测试样本,对于测试样本来说,预处理应该和训练样本一致,即测试样本的最大值和最小值应该是训练集的最大值与最小值。假设x是训练样本,y是测试样本,则代码如下:
示例:

x=[2,3,4,5,6;7,8,9,10,11];
y=[2,3;4,5];
[xx,ps]=mapminmax(x,0,1);
yy=mapminmax('apply',y,ps)

但对于训练样本和测试样本,一般是将两者合起来一起归一化,例如要将train,test一起归一化:

[mtrain,ntrain]=size(train);
[mtest,ntest]=size(test);
dataset=[train;test];
[dataset_scale,ps]=mapminmax(dataset',0,1);
train=dataset_scale(1:mtrain,:);
test=dataset_scale((mtrain+1):(mtrain+mtest),:);

对于4式,是预处理之后的数据进行反转得到原始数据

x=[2,3,4,5,6;7,8,9,10,11];
y=[2,3;4,5];
[xx,ps]=mapminmax(x,0,1);
yy=mapminmax('apply',y,ps);
y=mapminmax('reverse',yy,ps)

归一化算法描述

y ′ = l o w e r + ( u p p e r − l o w e r ) ∗ ( y − m i n ) / ( m a x − m i n ) y’=lower+(upper-lower)*(y-min)/(max-min) y=lower+(upperlower)(ymin)/(maxmin)
其中,y表示原始数据,y’表示经过归一化后的数据。

按列进行归一化

mapminmax函数默认是按行进行归一化的。当我们使用libsvm工具箱进行回归分析时,其数据组织要求一行表示一个样本数据,因此我们需要掌握如何使用mapminmax函数按列进行归一化的方法。

基于magic函数生成测试数据,假设有5个样本。

train = magic(5);
    17    24     1     8    15
    23     5     7    14    16
     4     6    13    20    22
    10    12    19    21     3
    11    18    25     2     9

假设第1列数据为因变量数据,第2、3、4和5列数据为自变量数据。每一列数据的属性相同,假设第1列数据表征身体的健康分数,2、3、4和5列是一些测量指标(如:体重、身高等)。在对数据进行归一化时,应该对每一列进行归一化,而不是将体重和升高一起进行归一化。
由于mapminmax只能按行进行归一化,因此,我们只需要对训练数据进行转置,然后进行归一化,归一化后再转置回来即可。

t      = magic(5);          % 训练数据
x      = t';                % 转置
[y,ps] = mapminmax(x,0,1);  % 归一化
tn     = y';                % 转置

结果:

    0.6842    1.0000         0    0.3158    0.6316
    1.0000         0    0.2500    0.6316    0.6842
         0    0.0526    0.5000    0.9474    1.0000
    0.3158    0.3684    0.7500    1.0000         0
    0.3684    0.6842    1.0000         0    0.3158

如果觉得上述方法不够简单,还可以使用下面的函数进行归一化:
描述

t = magic(5)
scaleSVM(t,0,1)
function out_scale = scaleSVM(c,lower,upper)
%   设置归一化范围 [lower ,upper]
%   按列进行归一化
[m,n]=size(c);                              %%获取行数m 和 列数  n
                             
Cmax=zeros(1,n);                         
Cmin=zeros(1,n);                         
for i=1:n
     Cmax(1,i)=max(c(:,i));                 %%Cmax用来保存每一列中的最大值
end
for i=1:n
    Cmin(1,i)=min(c(:,i));                  %%Cmin用来保存每一列中的最小值
end
for i=1:m
    for j=1:n
        c(i,j)=lower+(upper-lower)*(c(i,j)-Cmin(1,j))/(Cmax(1,j)-Cmin(1,j));  %%执行前述的公式进行归一化
    end
end
out_scale=c;
end

参考:
https://www.mathworks.com/help/deeplearning/ref/mapminmax.html;jsessionid=8db547639f6ef5a379e2738db0ef
https://blog.csdn.net/qq_22625309/article/details/76576184
https://www.cnblogs.com/litthorse/p/9276594.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/152292.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 内网安全 信息收集(收集内网计算机的所有信息 进行攻击.)

    内网安全 信息收集(收集内网计算机的所有信息 进行攻击.)?“信息收集”会对渗透测试工程师和网络安全工程师具有重大作用:???在渗透测试人员进入一个内网后,面对的是一片“未知的区域”,所以渗透测试人员首先会对当前所处的网络环境进行判断,通常的判断分为三种.?(1)我是谁?——对计算机的角色进行判断.?(2)我在哪?——对目前机器所处位置区域的判断。?(3)这是哪?——对目前机器所处网络环境的拓扑结构进行分析和判断。

  • linux下开启、关闭、重启mysql服务命令

    linux下开启、关闭、重启mysql服务命令一、启动1、使用service启动:servicemysqlstart2、使用mysqld脚本启动:/etc/inint.d/mysqlstart3、使用safe_mysqld启动:safe_mysql&二、停止1、使用service启动:servicemysqlstop2、使用mysqld脚本启动:/etc/inint.d/mysqlstop3、mysqladminshutdown三、重启1、使用service启动:service.

    2022年10月29日
  • 通俗易懂的Mybatis工作原理[通俗易懂]

    作为半自动的ORM框架,Mybatis被越来越多的企业接受。搞清楚它的工作原理以及底层实现,对于开发者可事半功倍。很多文章都是使用大批量的源码流程去分析原理。对于有源码阅读功底的开发者,也许还能招架住,但还是不直观。我以前的很多文章都是这么做的,后来有朋友私信建议说,这些文章类似于个人笔记,只能自己阅读,不利于分享,所以,本文将尝试采用通俗易懂的白话文带领大家认识一下Mybatis的工作原理。(PS:大家可以设想,如果自己在开发Mybatis,该如何设计好Mybatis的功能呢?)一...

  • 2022最新短视频API解析接口源码

    2022最新短视频API解析接口源码2022最新短视频API解析接口分发管理源码,全新UI,全新系统源码支持去水印接口分发功能,支持注册分发个人独立去水印接口功能,带有后台管理系统,支持注册账号在线充值和购买包邮套餐,源码对接了支付宝当面付,官方支付放心收款,套餐可随意设置包点数或包月等源码下载稍后上传更新下载地址…

  • vscode自动错误提示_vscode和vs哪个好用

    vscode自动错误提示_vscode和vs哪个好用VScode环境配置

  • include用法及搭配(include相关短语)

    iostream与iostream.h#include<iostream.h>//这个就是1998年标准化以后的标准头文件#include<iostream>//这个就是标准化以前的头文件更本质上的区别就是iostream把标准C++库的组件放在一个名位std的namespace里面。而相对的iostream.h则将这些标准组件放在全…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号