大家好,又见面了,我是你们的朋友全栈君。
以github上yscbm的代码为例进行讲解,代码链接:https://github.com/yscbm/tensorflow/blob/master/common/extract_cifar10.py
首先导入必要的模块
<pre><code>
import gzip
import numpy as np
import os
import tensorflow as tf
</pre></code>
我们定义一些变量,因为针对的是cifar10数据集,所以变量的值都是固定的,为什么定义这些变量呢,因为变量的名字可以很直观的告诉我们这个数字的代表什么,试想如果代码里面全是些数字,我们会不会看糊涂了呢,我们知道cifar10数据集下载下来你会发现有data_batch_1.bin,data_batch_2.bin….data_batch_5.bin五个作为训练,test_batch.bin作为测试,每一个文件都是10000张图片,因此50000张用于训练,10000张用于测试
<pre><code>
LABEL_SIZE = 1
IMAGE_SIZE = 32
NUM_CHANNELS = 3
PIXEL_DEPTH = 255
NUM_CLASSES = 10
TRAIN_NUM = 10000
TRAIN_NUMS = 50000
TEST_NUM = 10000
</pre></code>
接着我们定义提取数据的函数
<pre><code>
def extract_data(filenames):
#验证文件是否存在
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError(‘Failed to find file: ‘ + f)
#读取数据
labels = None
images = None
for f in filenames:
bytestream=open(f,’rb’)
#读取数据,首先将数据集中的数据读取进来作为buf
buf = bytestream.read(TRAIN_NUM * (IMAGE_SIZE * IMAGE_SIZE * NUM_CHANNELS+LABEL_SIZE))
#把数据流转化为np的数组,为什么要转化为np数组呢,因为array数组只支持一维操作,为了满足我们的操作需求,我们利用np.frombuffer()将buf转化为numpy数组现在data的shape为(30730000,),3073是3*1024+1得到的,3个channel(r,g,b),每个channel有1024=32*32个信息,再加上 1 个label
data = np.frombuffer(buf, dtype=np.uint8)
#改变数据格式,将shape从原来的(30730000,)——>为(10000,3073)
data = data.reshape(TRAIN_NUM,LABEL_SIZE+IMAGE_SIZE* IMAGE_SIZE* NUM_CHANNELS)
#分割数组,分割数组,np.hsplit是在水平方向上,将数组分解为label_size的一部分和剩余部分两个数组,在这里label_size=1,也就是把标签label给作为一个数组单独切分出来如果你对np.split还不太了解,可以自行查阅一下,此时label_images的shape应该是这样的[array([…….]) , array([…………………..])]
labels_images = np.hsplit(data, [LABEL_SIZE])
label = labels_images[0].reshape(TRAIN_NUM)#此时labels_images[0]就是我们上面切分数组得到的第一个数组,在这里就是label数组,这时的shape为array([[3] , [6] , [4] , ……. ,[7]]),我们把它reshape()一下变为了array([3 , 6 , …….. ,7])
image = labels_images[1].reshape(TRAIN_NUM,IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)#此时labels_image[1]就是我们上面切分数组的剩余部分,也就是图片部分我们把它reshape()为(10000,32,32,3)
if labels == None:
labels = label
images = image
else:
#合并数组,不能用加法
labels = np.concatenate((labels,label))
images = np.concatenate((images,image))
images = (images – (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
return labels,images
</pre></code>
定义提取训练数据函数
<pre><code>
def extract_train_data(files_dir):
#获得训练数据
filenames = [os.path.join(files_dir, ‘data_batch_%d.bin’ % i) for i in xrange(1, 6)]
return extract_data(filenames)
</pre></code>
定义提取测试数据函数
<pre><code>
def extract_test_data(files_dir):
#获得测试数据
filenames = [os.path.join(files_dir, ‘test_batch.bin’),]
return extract_data(filenames)
</pre></code>
把稠密数据label[1,5…]变为[[0,1,0,0…],[…]…]
<pre><code>
def dense_to_one_hot(labels_dense, num_classes):
#数据数量,np.shape[0]返回行数,对于一维数据返回的是元素个数,如果读取了5个文件的所有训练数据,那么现在的num_labels的值应该是50000
num_labels = labels_dense.shape[0]
#生成[0,1,2…]*10,[0,10,20…],之所以这样子是每隔10个数定义一次值,比如第0个,第11个,第22个……的值都赋值为1
index_offset = np.arange(num_labels) * num_classes
#初始化np的二维数组,一个全0,shape为(50000,10)的数组
labels_one_hot = np.zeros((num_labels, num_classes))
#相对应位置赋值变为[[0,1,0,0…],[…]…],np.flat将labels_one_hot砸平为1维
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
</pre></code>
定义cifar10数据集类
<pre><code>
class Cifar10DataSet(object):
“””docstring for Cifar10DataSet”””
def __init__(self,data_dir):
super(Cifar10DataSet, self).__init__()
self.train_labels,self.train_images = extract_train_data(os.path.join(data_dir,’cifar10/cifar-10-batches-bin’))
self.test_labels,self.test_images = extract_test_data(os.path.join(data_dir,’cifar10/cifar-10-batches-bin’))
print self.train_labels.size
self.train_labels = dense_to_one_hot(self.train_labels,NUM_CLASSES)
self.test_labels = dense_to_one_hot(self.test_labels,NUM_CLASSES)
#epoch完成次数
self.epochs_completed = 0
#当前批次在epoch中进行的进度
self.index_in_epoch = 0
def next_train_batch(self,batch_size):
#起始位置
start = self.index_in_epoch
self.index_in_epoch += batch_size
#print “self.index_in_epoch: “,self.index_in_epoch
#完成了一次epoch
if self.index_in_epoch > TRAIN_NUMS:
#epoch完成次数加1,50000张全部训练完一次,那么没有数据用了怎么办,采取的办法就是将原来的数据集打乱顺序再用
self.epochs_completed += 1
#print “self.epochs_completed: “,self.epochs_completed
#打乱数据顺序,随机性
perm = np.arange(TRAIN_NUMS)
np.random.shuffle(perm)
self.train_images = self.train_images[perm]
self.train_labels = self.train_labels[perm]
start = 0
self.index_in_epoch = batch_size
#条件不成立会报错
assert batch_size <= TRAIN_NUMS
end = self.index_in_epoch
#print “start,end: “,start,end
return self.train_images[start:end], self.train_labels[start:end]
def test_data(self):
return self.test_images,self.test_labels
</pre></code>
<pre><code>
def main():
cc = Cifar10DataSet(‘../data/’)
cc.next_train_batch(100)
if __name__ == ‘__main__’:
main()
</pre></code>
LABEL_SIZE = 1
IMAGE_SIZE = 32
NUM_CHANNELS = 3
PIXEL_DEPTH = 255
NUM_CLASSES = 10
TRAIN_NUM = 10000
TRAIN_NUMS = 50000
TEST_NUM = 10000
</pre></code>
接着我们定义提取数据的函数
<pre><code>
def extract_data(filenames):
#验证文件是否存在
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f)
#读取数据
labels = None
images = None
for f in filenames:
bytestream=open(f,'rb')
#读取数据,首先将数据集中的数据读取进来作为buf
buf = bytestream.read(TRAIN_NUM * (IMAGE_SIZE * IMAGE_SIZE * NUM_CHANNELS+LABEL_SIZE))
#把数据流转化为np的数组,为什么要转化为np数组呢,因为array数组只支持一维操作,为了满足我们的操作需求,我们利用np.frombuffer()将buf转化为numpy数组现在data的shape为(30730000,),3073是3*1024+1得到的,3个channel(r,g,b),每个channel有1024=32*32个信息,再加上 1 个label
data = np.frombuffer(buf, dtype=np.uint8)
#改变数据格式,将shape从原来的(30730000,)——>为(10000,3073)
data = data.reshape(TRAIN_NUM,LABEL_SIZE+IMAGE_SIZE* IMAGE_SIZE* NUM_CHANNELS)
#分割数组,分割数组,np.hsplit是在水平方向上,将数组分解为label_size的一部分和剩余部分两个数组,在这里label_size=1,也就是把标签label给作为一个数组单独切分出来如果你对np.split还不太了解,可以自行查阅一下,此时label_images的shape应该是这样的[array([.......]) , array([.......................])]
labels_images = np.hsplit(data, [LABEL_SIZE])
label = labels_images[0].reshape(TRAIN_NUM)#此时labels_images[0]就是我们上面切分数组得到的第一个数组,在这里就是label数组,这时的shape为array([[3] , [6] , [4] , ....... ,[7]]),我们把它reshape()一下变为了array([3 , 6 , ........ ,7])
image = labels_images[1].reshape(TRAIN_NUM,IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)#此时labels_image[1]就是我们上面切分数组的剩余部分,也就是图片部分我们把它reshape()为(10000,32,32,3)
if labels == None:
labels = label
images = image
else:
#合并数组,不能用加法
labels = np.concatenate((labels,label))
images = np.concatenate((images,image))
images = (images - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
return labels,images
</pre></code>
定义提取训练数据函数
<pre><code>
def extract_train_data(files_dir):
#获得训练数据
filenames = [os.path.join(files_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6)]
return extract_data(filenames)
</pre></code>
定义提取测试数据函数
<pre><code>
def extract_test_data(files_dir):
#获得测试数据
filenames = [os.path.join(files_dir, 'test_batch.bin'),]
return extract_data(filenames)
</pre></code>
把稠密数据label[1,5...]变为[[0,1,0,0...],[...]...]
<pre><code>
def dense_to_one_hot(labels_dense, num_classes):
#数据数量,np.shape[0]返回行数,对于一维数据返回的是元素个数,如果读取了5个文件的所有训练数据,那么现在的num_labels的值应该是50000
num_labels = labels_dense.shape[0]
#生成[0,1,2...]*10,[0,10,20...],之所以这样子是每隔10个数定义一次值,比如第0个,第11个,第22个......的值都赋值为1
index_offset = np.arange(num_labels) * num_classes
#初始化np的二维数组,一个全0,shape为(50000,10)的数组
labels_one_hot = np.zeros((num_labels, num_classes))
#相对应位置赋值变为[[0,1,0,0...],[...]...],np.flat将labels_one_hot砸平为1维
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
</pre></code>
定义cifar10数据集类
<pre><code>
class Cifar10DataSet(object):
"""docstring for Cifar10DataSet"""
def __init__(self,data_dir):
super(Cifar10DataSet, self).__init__()
self.train_labels,self.train_images = extract_train_data(os.path.join(data_dir,'cifar10/cifar-10-batches-bin'))
self.test_labels,self.test_images = extract_test_data(os.path.join(data_dir,'cifar10/cifar-10-batches-bin'))
print self.train_labels.size
self.train_labels = dense_to_one_hot(self.train_labels,NUM_CLASSES)
self.test_labels = dense_to_one_hot(self.test_labels,NUM_CLASSES)
#epoch完成次数
self.epochs_completed = 0
#当前批次在epoch中进行的进度
self.index_in_epoch = 0
def next_train_batch(self,batch_size):
#起始位置
start = self.index_in_epoch
self.index_in_epoch += batch_size
#print "self.index_in_epoch: ",self.index_in_epoch
#完成了一次epoch
if self.index_in_epoch > TRAIN_NUMS:
#epoch完成次数加1,50000张全部训练完一次,那么没有数据用了怎么办,采取的办法就是将原来的数据集打乱顺序再用
self.epochs_completed += 1
#print "self.epochs_completed: ",self.epochs_completed
#打乱数据顺序,随机性
perm = np.arange(TRAIN_NUMS)
np.random.shuffle(perm)
self.train_images = self.train_images[perm]
self.train_labels = self.train_labels[perm]
start = 0
self.index_in_epoch = batch_size
#条件不成立会报错
assert batch_size <= TRAIN_NUMS
end = self.index_in_epoch
#print "start,end: ",start,end
return self.train_images[start:end], self.train_labels[start:end]
def test_data(self):
return self.test_images,self.test_labels
</pre></code>
<pre><code>
def main():
cc = Cifar10DataSet('../data/')
cc.next_train_batch(100)
if __name__ == '__main__':
main()
</pre></code>
以上就是我对cifar10数据集读取的理解,cifar10数据集的介绍参考 http://blog.csdn.net/garfielder007/article/details/51480844
本文作为自己的笔记
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/152075.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...