keras 双向LSTM 简单示例[通俗易懂]

keras 双向LSTM 简单示例[通俗易懂]importtensorflow.compat.v1astffromkeras.layersimportConvLSTM2D,TimeDistributed,Conv2D,Bidirectionalimportnumpyasnpinputs_np=tf.convert_to_tensor(np.random.random((4,6,256,256,3)).astype(np.float32))#shape=[5,6,10,10,3]conv1=TimeDi.

大家好,又见面了,我是你们的朋友全栈君。

示例1: 仅返回各个时刻的状态 

import tensorflow.compat.v1 as tf
from keras.layers import ConvLSTM2D,TimeDistributed,Conv2D,Bidirectional
import numpy as np


inputs_np = tf.convert_to_tensor(np.random.random((4,6,256,256,3)).astype(np.float32))  # shape = [5,6,10,10,3]

conv1 = TimeDistributed(Conv2D(filters=10,kernel_size=(3,3),strides=(1,1)),input_shape=(6,256,256,3))(inputs_np)
lstm_outs= Bidirectional(ConvLSTM2D(filters=4,kernel_size=(3,3),strides=(1,1),padding='valid',activation='tanh',return_sequences=True),merge_mode=None)(conv1)

with tf.Session() as sess:
	sess.run(tf.global_variables_initializer())
	lstm_out_1,lstm_out_2 = sess.run(lstm_outs)

	print(lstm_out_1.shape)
	

注意: 在Bidirectional中,参数merge_mode有5种选择[“sum”,”mul”,”concat”,”ave”,None],默认是“concat”模式,两个LSTM的输出沿channel维度串联。 选择None时,输出不会被结合,作为一个列表返回。

 示例2:同时返回各个时刻的输出,与最后一个时刻的状态(注意输出的排序)

import tensorflow as tf
import numpy as np
import keras
from keras.layers import ConvLSTM2D,Bidirectional

lstm_input = np.random.random((4,6,30,30,3)).astype(np.float32)
lstm_input = tf.convert_to_tensor(lstm_input)

lstm_out1,lstm_out2,h1,c1,h2,c2 = Bidirectional(ConvLSTM2D(filters=1,kernel_size=[5,5],strides=(1,1),padding='valid',
                                                           activation='relu',batch_input_shape=(-1,6,30,30,3),
                                                           return_sequences=False,return_state=True),
                                                merge_mode=None)(lstm_input)


with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    lstm_out1,lstm_out2,h1,c1,h2,c2= sess.run([lstm_out1,lstm_out2,h1,c1,h2,c2])
    print(lstm_out1==h1)
    print(lstm_out2==h2)

可见,在双向LSTM中,如果输出LSTM的最后一个时刻的cell状态, 得到的输出的排序是:lstm_out1, lstm_out2,  h1, c1, h2, c2。

其中lstm_out1,h1,c1是前向LSTM的输出,lstm_out2,h2,c2是后向LSTM的输出。

参考:https://keras.io/zh/layers/wrappers/#bidirectional

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/151619.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • mysql和oracle的sql区别有什么_java和oracle的关系

    mysql和oracle的sql区别有什么_java和oracle的关系一、mysql和oracle宏观上的区别:1、mysql与oracle都是关系型数据库,应用于各种平台。mysql最开始是一个瑞典公司开发的,但后来被sun公司收购,后来sun又被oracle收购,所以现在可以说mysql属于甲骨文公司了,mysql开源免费的,而oracle则是收费的,并且价格非常高。mysql默认端口:3306,默认用户:rootoracle默认端口:1521,默认用户:systemmysql的安装卸载很简单,oracle很麻烦,安装所用的空间差别也是很大的,mysql安装后

  • 数据运营系列(二):如何用合成控制法判断策略实施效果

    数据运营系列(二):如何用合成控制法判断策略实施效果1.合成控制法合成控制法最开始是经济学家用来研究评估某个政策实施在某国家或地区的效果,原理即是反事实框架,假想该地区没有受政策干预会怎样,并与事实上受到干预的结果做对比。二者之差即为“…

  • Java开发手册之二方库依赖

    Java开发手册之二方库依赖Java开发手册之二方库依赖

  • Jenkins(7)参数化构建(构建git仓库分支)[通俗易懂]

    Jenkins(7)参数化构建(构建git仓库分支)[通俗易懂]前言当我们的自动化项目越来越多的时候,在代码仓库会提交不同的分支来管理,在用jenkins来构建的时候,我们希望能通过参数化构建git仓库的分支。下载安装GitParameter插件系统管理-

  • B/S架构及其运行原理

    目录一.B/S的概念二.B/S工作原理三.B/S的优点:四.B/S体系结构的特点:五.与传统C/S的联系与区别:一.B/S的概念B/S(Brower/Server,浏览器/服务器)模式又称B/S结构,是Web兴起后的一种网络结构模式。Web浏览器是客户端最主要的应用软件。这种模式统一了客户端,将系统功能实现的核心部分…

  • jenkins自定义构建参数_git提交到远程分支

    jenkins自定义构建参数_git提交到远程分支前言当我们的自动化项目越来越多的时候,在代码仓库会提交不同的分支来管理,在用jenkins来构建的时候,我们希望能通过参数化构建git仓库的分支。下载安装GitParameter插件系统管理-

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号