SMO算法笔记及个人理解

SMO算法笔记及个人理解SMO算法介绍SMO算法是一种启发式算法,其基本思路是:如果所有变量的解都满足此优化问题的KKT条件,那么这个最优化问题的解就得到了。(KKT条件是该最优化问题的充分必要条件)。否则,选择两个变量,固定其他变量针对这两个变量构建一个二次规划问题。特点:将原始的二次规划问题分解为只含有两个变量的二次规划子问题,对子问题不断求解,使得所有的变量满足KKT条件包含两部分:1、求解两个变量二次规划的解析方法2、选择变量的启发式方法(1)第1个变量的选择:确定在当前的分类器中,违反K.

大家好,又见面了,我是你们的朋友全栈君。

SMO算法介绍

SMO算法是一种启发式算法,其基本思路是:如果所有变量的解都满足此优化问题的KKT条件,那么这个最优化问题的解就得到了。(KKT条件是该最优化问题的充分必要条件)。否则,选择两个变量,固定其他变量针对这两个变量构建一个二次规划问题。

SMO算法笔记及个人理解

 特点:

将原始的二次规划问题分解为只含有两个变量的二次规划子问题,对子问题不断求解,使得所有的变量满足KKT条件

包含两部分:

1、求解两个变量二次规划的解析方法

2、选择变量的启发式方法

(1)第1个变量的选择:确定在当前的分类器中,违反KKT条件的元组Xi;

SMO称第1个变量的选择称为外循环。外循环在训练样本中选取违反KKT条件最严重的样本点,将其作为第一个变量。遍历的时候首先遍历满足SMO算法笔记及个人理解的样本点,也就是在间隔边界上的支持向量点,检验是否满足KKT条件;如果都满足,那么遍历整个训练集,检验是否满足KKT条件。 

(2)第2个变量的选择:根据Xi,找到使得|Ei−Ej|最大的元组Xj;

SMO称第2个变量的选择称为内循环。在找到第一个变量的基础上,第二个变量的标准是希望能使SMO算法笔记及个人理解有足够大的变化。由于SMO算法笔记及个人理解是依赖于|E1−E2|,为了加快计算的速度,所以选择|E1−E2|最大时的SMO算法笔记及个人理解

当E1为正时,那么选择最小的Ei作为E2;如果E1为负,选择最大Ei作为E2。

为了节省时间,通常为每个样本的Ei保存在一个列表中,选择最大的|E1−E2|来近似最大化步长。 
 

SMO算法步骤总结:

1.初始化α,一般情况下令初始的αi全部为0;
2.选取优化变量α1和α2,执行相关的优化计算,得到更新后的α1,α2;
3.开始新的一轮迭代,重复执行上面的第2步,直到全部的αi满足公式(2)的KKT条件以及公式(1)中的约束条件;
SMO算法笔记及个人理解

 SMO算法笔记及个人理解

 (借鉴其他博主的图解)SVM学习总结(三)SMO算法流程图及注释源码_u010484388的博客-CSDN博客_smo算法代码

SMO算法笔记及个人理解

 

代码细节

下面的伪代码描述了整个SMO算法:

target = desired output vector
point = training point matrix
procedure takeStep(i1,i2)
    if (i1 == i2) return 0
    alph1 = Lagrange multiplier for i1
    y1 = target[i1]
    E1 = SVM output on point[i1] – y1 (check in error cache)
    s = y1*y2
    Compute L, H via equations (13) and (14)
    if (L == H)
        return 0
    k11 = kernel(point[i1],point[i1])
    k12 = kernel(point[i1],point[i2])
    k22 = kernel(point[i2],point[i2])
    eta = k11+k22-2*k12
    if (eta > 0)
    {

        a2 = alph2 + y2*(E1-E2)/eta
        if (a2 < L) a2 = L
        else if (a2 > H) a2 = H
    }
    else
    {

        Lobj = objective function at a2=L
        Hobj = objective function at a2=H
        if (Lobj < Hobj-eps)
            a2 = L
        else if (Lobj > Hobj+eps)
            a2 = H
        else
            a2 = alph2
    }
    if (|a2-alph2| < eps*(a2+alph2+eps))
        return 0
    a1 = alph1+s*(alph2-a2)
    Update threshold to reflect change in Lagrange multipliers
    Update weight vector to reflect change in a1 & a2, if SVM is linear
    Update error cache using new Lagrange multipliers
    Store a1 in the alpha array
    Store a2 in the alpha array
    return 1
endprocedure

procedure examineExample(i2)
    y2 = target[i2]
    alph2 = Lagrange multiplier for i2
    E2 = SVM output on point[i2] – y2 (check in error cache)
    r2 = E2*y2
    if ((r2 < -tol && alph2 < C) || (r2 > tol && alph2 > 0))
    {

        if (number of non-zero & non-C alpha > 1)
        {

            i1 = result of second choice heuristic (section 2.2)
            if takeStep(i1,i2)
                return 1
        }
        loop over all non-zero and non-C alpha, starting at a random point
        {

            i1 = identity of current alpha
            if takeStep(i1,i2)
                return 1
        }
        loop over all possible i1, starting at a random point
        {

            i1 = loop variable
            if (takeStep(i1,i2)
                return 1
        }
    }
    return 0
endprocedure

main routine:
    numChanged = 0;
    examineAll = 1;
    while (numChanged > 0 | examineAll)
    {

        numChanged = 0;
        if (examineAll)
            loop I over all training examples
                numChanged += examineExample(I)
        else
            loop I over examples where alpha is not 0 & not C
                numChanged += examineExample(I)
        if (examineAll == 1)
            examineAll = 0
        else if (numChanged == 0)
            examineAll = 1
}
 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/151209.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 软件激活成功教程教程2[通俗易懂]

    软件激活成功教程教程2[通俗易懂]第四章–调试器及相关工具入门在写这章之前,我看了一下看雪以往的教程。本来想参考一下,可忽然发现,写这样的一章,是一件非常愚蠢的事情,因为我觉的关于这些工具的使用教程。看雪教程中已经写的够详细的了,我并不认为你会看不懂。所以我不想做浪费时间的人,本章就此搁浅。推荐看《CrackTutorial2001》,推荐看《看雪论坛精华一、二、三、四》,推荐看《加密与解密--软件保护技术及完全解决方案》,

  • Android开发:仿美团下拉列表菜单,帮助类,复用简单

    Android开发:仿美团下拉列表菜单,帮助类,复用简单

  • flowable 集成mongodb

    flowable 集成mongodb学无止境,活到老学到老,每天都问自己进步了吗?1.背景由于公司每天有至少1500个表单发起,处理待办任务至少7000个,累计历史任务数据已经达到200多w条,时间一长,通过数据库查询已办的任何和我发起的流程巨慢所以我们考虑到这些数据能不能放入ES或者是mongodb中流程中心1.0版本集成的是ES,速度确实非常快,提升查询性能近万倍,但是由于ES是一个全文检索的系统,对我们这些业务数据来说…

  • 基于MATLAB的AM调制解调「建议收藏」

    基于MATLAB的AM调制解调「建议收藏」基于MATLAB的AM调制解调摘要现在的社会越来越发达,科学技术不断的在更新,在信号和模拟电路里面经常要用到调制与解调,而AM的调制与解调是最基本的,也是经常用到的。用AM调制与解调可以在电路里面实现很多功能,制造出很多有用又实惠的电子产品,为我们的生活带来便利。在我们日常生活中用的收音机就是采用了AM调制的方式,而且在军事和民用领域都有十分重要的研究课题。现用MATLAB中M文件实现本课

  • jquery中的css方法_js修改css样式属性

    jquery中的css方法_js修改css样式属性使用jQuery改变HTML元素的CSS样式

  • 阿里巴巴Java开发手册(全册四版)

    阿里巴巴Java开发手册(全册四版)阿里官方Java代码规范标准《阿里巴巴Java开发手册2017/2018/2019/2020》小白必备!!!2017年9月25日,阿里巴巴Java开发手册正式发布,至今为止已更迭了四个版本,分别是2017(终极版)、2018(详尽版)、2019(华山版)、2020(泰山版),值得收藏。

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号