大家好,又见面了,我是你们的朋友全栈君。
t检验(student t检验)是应用t分布的特征,将t作为检验的统计量来进行统计推断方法。它对样本要求较小(例如n<30)。
主要用途:
- 样本均数与总体均数的差异比较
- 两样本均数的差异比较
分类:
- 单样本t检验
- 独立样本t检验
- 配对样本t检验
单样本t检验
单样本t检验主要用于判断样本均数与总体均数是否存在显著差异。
适用条件
- 已知一个总体均数
- 已知一个样本均数及该样本标准差
- 样本正态分布或近似正态总体
实际应用中,当数据量足够大时,对样本正态分布要求不再严格。只要数据分布不是严重偏态,一般来说单样本t检验都是适用的。
具体计算公式
t = x ˉ − μ 0 s / n t=\frac{\bar{x}-μ_0}{s/\sqrt{n}} t=s/nxˉ−μ0
自 由 度 d f = n − 1 自由度df=n-1 自由度df=n−1
其中, x ˉ \bar{x} xˉ为样本均数、 μ 0 \mu_0 μ0为总体均数, s s s为样本标准偏差、 n n n为样本数。该统计量t在原假设 μ = μ 0 \mu=\mu_0 μ=μ0为真的条件下服从自由度为 n − 1 n-1 n−1的t分布。
R语言示例
R语言中可以用t.test函数进行t检验
(虚构)从某小学六年级抽取10名学生,其身高(单位:cm),是否认为该学校六年级平均身高130cm?
10名学生身高:
130,120,130,110,130,135,129,124,130,134
#生成数据
x <- c(130,120,130,110,130,135,129,124,130,134)
#t检验
t.test(x,mu = 130)
One Sample t-test
data: x
t = -1.1884, df = 9, p-value =
0.2651
alternative hypothesis: true mean is not equal to 130
95 percent confidence interval:
121.8702 132.5298
sample estimates:
mean of x
127.2
#结果显示,P=0.2651>0.05。在统计学上说明样本均数与总体均数没有差别。
独立样本t检验
独立样本t检验主要检验两个样本均数及其所代表的总体之间差异是否显著。
适用条件
- 独立性,各观察值之间相关独立
- 正态性,各样本均来自正态分布的总体
- 方差齐性,各样本所在总体的方差相等
具体计算公式
- 方差齐性条件下下
s c 2 = s 1 2 ( n 1 − 1 ) + s 2 2 ( n 2 − 1 ) n 1 + n 2 − 2 s_c^2=\frac{s_1^2(n_1-1)+s_2^2(n_2-1)}{n_1+n_2-2} sc2=n1+n2−2s12(n1−1)+s22(n2−1)
t = x 1 ˉ − x 2 ˉ s x 1 ˉ − x 2 ˉ = x 1 ˉ − x 2 ˉ s c 2 ( 1 / n 1 + 1 / n 2 ) t=\frac{\bar{x_1}-\bar{x_2}}{s_{\bar{x_1}-\bar{x_2}}}=\frac{\bar{x_1}-\bar{x_2}}{\sqrt{s_c^2(1/n_1+1/n_2)}} t=sx1ˉ−x2ˉx1ˉ−x2ˉ=sc2(1/n1+1/n2)x1ˉ−x2ˉ
v = ( n 1 − 1 ) + ( n 2 − 1 ) = n 1 + n 2 − 2 v=(n_1-1)+(n_2-1)=n_1+n_2-2 v=(n1−1)+(n2−1)=n1+n2−2
其中, v v v为自由度 - 方差不齐条件下
t ’ = x 1 ˉ − x 2 ˉ S 1 2 n 1 + S 2 2 n 2 t^{’}=\frac{\bar{x_1}-\bar{x_2}}{\sqrt{
{\frac{S_1^2}{n_1}}+{\frac{S_2^2}{n_2}}}} t’=n1S12+n2S22x1ˉ−x2ˉ
v = ( S 1 2 / n 1 + S 2 2 / n 2 ) 2 ( S 1 2 / n 1 ) 2 n 1 − 1 + ( S 2 2 / n 2 ) 2 n 2 − 1 v=\frac{
{(S_1^2/n_1+S_2^2/n_2)^2}}{
{\frac{(S_1^2/n_1)^2}{n_1-1}}+{\frac{(S_2^2/n_2)^2}{n_2-1}}} v=n1−1(S12/n1)2+n2−1(S22/n2)2(S12/n1+S22/n2)2
R语言示例
独立样本t检验需要检验其适用条件,主要是指方差齐性,其他条件:样本独立性一般数据可以保障。t检验对样本正态性具有一定耐受性。
方差齐性可以用car包leveneTest函数检验
leveneTest(y=,group =)
其中,y是两组样本组成的数据,group是两组样本的分组情况。
方差齐性检验之后,才可进行独立样本t检验。
用t.test(A,B,var.equal=TRUE,paired=FALSE)
A、B为数据集,var.equal=TRUE为方差齐性。paired=FALSE非配对样本。
示例:
(虚构)有两组学生(每组10人),一组采用传统教育,一组采用素质教育。一学期后,两组学生语文成绩(满分100)如下。问两组学生成绩之间差别是否显著。
- 传统组A
85,84,95,73,77,65,85,93,90,91 - 素质组B
87,96,77,80,79,96,93,82,84,86
A <- c(85,84,95,73,77,65,85,93,90,91)
B <- c(87,96,77,80,79,96,93,82,84,86)
#方差齐性检验
#合并数据
y <- c(A,B)
#数据分组标签
group=as.factor(c(rep(1,10),rep(2,10)))
#载入car包
library(car)
#方差齐性检验
leveneTest(y=y,group = group)
#结果显示,P=0.5505>0.05。说明方差齐性。
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.3703 0.5505
18
#独立样本t检验
t.test(A,B,paired = FALSE)
#结果显示P=0.5639。说明两者没有区别。
Welch Two Sample t-test
data: A and B
t = -0.589, df = 16.463, p-value = 0.5639
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-10.100024 5.700024
sample estimates:
mean of x mean of y
83.8 86.0
配对样本t检验
配对样本t检验同样检验两个样本均数及其所代表的总体之间差异是否显著。
独立样本t检验与配对样本t检验同属于双样本t检验,不同点在于配对样本t检验要求两个样本之间存在某些配对关系。
常见配对关系:
- 同一样本两种不同处理方法的检验结果
- 同一样本前后时间点的检验结果
适用条件
- 正态性
具体计算公式
t = d ˉ − 0 s x ˉ = d ˉ s / n t=\frac{\bar{d}-0}{s_{\bar{x}}}=\frac{\bar{d}}{s/\sqrt{n}} t=sxˉdˉ−0=s/ndˉ
d f = n − 1 ( n 为 配 对 数 目 ) df=n-1(n为配对数目) df=n−1(n为配对数目)
R语言示例
配对样本t检验用t.test函数完成。
t.test(x,y,paired=TRUE)
其中,x、y为数据,paired=TRUE是配对数据
示例:
有20名女性分为10对,试吃两种药。经过一段时间后,药效如下。问两种药是否有区别
- 药1
4.4,5,5.8,4.6,4.9,4.8,6,5.9,4.3,5.1
- 药2
6.2,5.2,5.5,5,4.4,5.4,5,6.4,5.8,6.2
#生成数据
drug1 <- c(4.4,5,5.8,4.6,4.9,4.8,6,5.9,4.3,5.1)
drug2 <- c(6.2,5.2,5.5,5,4.4,5.4,5,6.4,5.8,6.2)
#配对样本t检验
t.test(drug1,drug2,paired = TRUE)
#结果显示,P=0.1575>0.05,不能说两者存在显著差别。
Paired t-test
data: drug1 and drug2
t = -1.5417, df = 9, p-value = 0.1575
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.0609306 0.2009306
sample estimates:
mean of the differences
-0.43
R 语 言 小 白 速 通 R语言小白速通 R语言小白速通
懂 点 R 语 言 懂点R语言 懂点R语言
欢 迎 分 享 收 藏 关 注 欢迎分享收藏关注 欢迎分享收藏关注
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/150919.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...