矩阵向量中两两间欧式距离计算[通俗易懂]

矩阵向量中两两间欧式距离计算[通俗易懂]目标:希望通过的矩阵运算就能得出矩阵向量中两两之间的欧式距离欧氏距离公式:一般而言,我们常见的欧式距离计算公式如下:a,b对应的是两组不同的向量dist(a,b)=(a1−b1)2+(a2−b2)2+⋅⋅⋅(an−bn)2dist(a,b)=\sqrt{(a_1-b_1)^{2}+(a_2-b_2)^{2}+···(a_n-b_n)^{2}}dist(a,b)=(a1​−b1​)2…

大家好,又见面了,我是你们的朋友全栈君。

目标:希望通过的矩阵运算就能得出矩阵向量中两两之间的欧式距离

欧氏距离公式:

  • 一般而言,我们常见的欧式距离计算公式如下:

    • a,b 对应的是两组不同的向量
    • d i s t ( a , b ) = ( a 1 − b 1 ) 2 + ( a 2 − b 2 ) 2 + ⋅ ⋅ ⋅ ( a n − b n ) 2 dist(a,b)=\sqrt{(a_1-b_1)^{2}+(a_2-b_2)^{2}+···(a_n-b_n)^{2}} dist(a,b)=(a1b1)2+(a2b2)2+(anbn)2
  • 事实上对于上面的公式如果我们通过向量的角度来考虑,就会变成是下列形式:

    • a,b 对应的是两组不同的向量
    • d i s t ( a , b ) = d o t ( a , a ) − 2 ∗ d o t ( a , b ) + d o t ( b , b ) dist(a,b) = \sqrt{dot(a,a)-2*dot(a,b)+dot(b,b)} dist(a,b)=dot(a,a)2dot(a,b)+dot(b,b)

假设有下列矩阵 A A A:

  • A = [ a 1 a 2 a 3 b 1 b 2 b 3 ] {A}= \left[{\begin{array}{}{a{_1}}&{a{_2}}&{a{_3}}\\{b{_1}}&{b{_2}}&{b{_3}}\end{array}}\right] A=[a1b1a2b2a3b3]

  • 为了凑出上面的公式:

    • 先计算出 d o t ( A , A ) dot(A,A) dot(A,A) -> A A T {AA^T} AAT

      • A ‾ = [ a 1 a 2 a 3 b 1 b 2 b 3 ] [ a 1 b 1 a 2 b 2 a 3 b 3 ] = [ ( a 1 ) 2 + ( a 1 ) 2 + ( a 1 ) 2 ( a 1 ) ( b 1 ) + ( a 2 ) ( b 2 ) + ( a 3 ) ( b 3 ) ( a 1 ) ( b 1 ) + ( a 2 ) ( b 2 ) + ( a 3 ) ( b 3 ) ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \overline{A} = \left[{\begin{array}{}{a{_1}}&{a{_2}}&{a{_3}}\\{b{_1}}&{b{_2}}&{b{_3}}\end{array}}\right] \left[{\begin{array}{}{a{_1}}&{b{_1}} \\ {a{_2}}&{b{_2}} \\ {a{_3}}&{b{_3}} \end{array}}\right] = \left[{\begin{array}{}{(a{_1})^2+(a{_1})^2+(a{_1})^2}&{(a{_1})(b{_1})+(a{_2})(b{_2})+(a{_3})(b{_3})} \\{(a{_1})(b{_1})+(a{_2})(b{_2})+(a{_3})(b{_3})} & {(b{_1})^2+(b{_2})^2+(b{_3})^2} \end{array}}\right] A=[a1b1a2b2a3b3]a1a2a3b1b2b3=[(a1)2+(a1)2+(a1)2(a1)(b1)+(a2)(b2)+(a3)(b3)(a1)(b1)+(a2)(b2)+(a3)(b3)(b1)2+(b2)2+(b3)2]
    • A ‾ \overline{A} A对角线:

      • A ‾ . d i a g ( ) \overline{A}.diag() A.diag() = [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2}\end{array}}\right] [(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2]
    • 对对角线矩阵进行一些变换

      • A ‾ 1 \overline{A}{_1} A1 = [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] T \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2}\end{array}}\right]^T [(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2]T [ 1 1 ] \left[{\begin{array}{}1 & 1\end{array}}\right] [11]
      • = [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(a{_1})^2+(a{_2})^2+(a{_3})^2} \\ {(b{_1})^2+(b{_2})^2+(b{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2} \end{array}}\right] [(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2]
      • A ‾ 2 \overline{A}{_2} A2 = [ 1 1 ] T \left[{\begin{array}{}1 & 1\end{array}}\right]^T [11]T [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2}\end{array}}\right] [(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2]
      • = [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2} \\ {(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2} \end{array}}\right] [(a1)2+(a2)2+(a3)2(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2(b1)2+(b2)2+(b3)2]
    • 经过了上面的处理,我们就可以得出上述的公式了

      • d i s t ( A ) = A ‾ 1 + A ‾ 2 − 2 A ‾ dist(A) = {\overline{A}{_1}} + {\overline{A}{_2}} – {\overline{2A}} dist(A)=A1+A22A
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/150907.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号