矩阵向量中两两间欧式距离计算[通俗易懂]

矩阵向量中两两间欧式距离计算[通俗易懂]目标:希望通过的矩阵运算就能得出矩阵向量中两两之间的欧式距离欧氏距离公式:一般而言,我们常见的欧式距离计算公式如下:a,b对应的是两组不同的向量dist(a,b)=(a1−b1)2+(a2−b2)2+⋅⋅⋅(an−bn)2dist(a,b)=\sqrt{(a_1-b_1)^{2}+(a_2-b_2)^{2}+···(a_n-b_n)^{2}}dist(a,b)=(a1​−b1​)2…

大家好,又见面了,我是你们的朋友全栈君。

目标:希望通过的矩阵运算就能得出矩阵向量中两两之间的欧式距离

欧氏距离公式:

  • 一般而言,我们常见的欧式距离计算公式如下:

    • a,b 对应的是两组不同的向量
    • d i s t ( a , b ) = ( a 1 − b 1 ) 2 + ( a 2 − b 2 ) 2 + ⋅ ⋅ ⋅ ( a n − b n ) 2 dist(a,b)=\sqrt{(a_1-b_1)^{2}+(a_2-b_2)^{2}+···(a_n-b_n)^{2}} dist(a,b)=(a1b1)2+(a2b2)2+(anbn)2
  • 事实上对于上面的公式如果我们通过向量的角度来考虑,就会变成是下列形式:

    • a,b 对应的是两组不同的向量
    • d i s t ( a , b ) = d o t ( a , a ) − 2 ∗ d o t ( a , b ) + d o t ( b , b ) dist(a,b) = \sqrt{dot(a,a)-2*dot(a,b)+dot(b,b)} dist(a,b)=dot(a,a)2dot(a,b)+dot(b,b)

假设有下列矩阵 A A A:

  • A = [ a 1 a 2 a 3 b 1 b 2 b 3 ] {A}= \left[{\begin{array}{}{a{_1}}&{a{_2}}&{a{_3}}\\{b{_1}}&{b{_2}}&{b{_3}}\end{array}}\right] A=[a1b1a2b2a3b3]

  • 为了凑出上面的公式:

    • 先计算出 d o t ( A , A ) dot(A,A) dot(A,A) -> A A T {AA^T} AAT

      • A ‾ = [ a 1 a 2 a 3 b 1 b 2 b 3 ] [ a 1 b 1 a 2 b 2 a 3 b 3 ] = [ ( a 1 ) 2 + ( a 1 ) 2 + ( a 1 ) 2 ( a 1 ) ( b 1 ) + ( a 2 ) ( b 2 ) + ( a 3 ) ( b 3 ) ( a 1 ) ( b 1 ) + ( a 2 ) ( b 2 ) + ( a 3 ) ( b 3 ) ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \overline{A} = \left[{\begin{array}{}{a{_1}}&{a{_2}}&{a{_3}}\\{b{_1}}&{b{_2}}&{b{_3}}\end{array}}\right] \left[{\begin{array}{}{a{_1}}&{b{_1}} \\ {a{_2}}&{b{_2}} \\ {a{_3}}&{b{_3}} \end{array}}\right] = \left[{\begin{array}{}{(a{_1})^2+(a{_1})^2+(a{_1})^2}&{(a{_1})(b{_1})+(a{_2})(b{_2})+(a{_3})(b{_3})} \\{(a{_1})(b{_1})+(a{_2})(b{_2})+(a{_3})(b{_3})} & {(b{_1})^2+(b{_2})^2+(b{_3})^2} \end{array}}\right] A=[a1b1a2b2a3b3]a1a2a3b1b2b3=[(a1)2+(a1)2+(a1)2(a1)(b1)+(a2)(b2)+(a3)(b3)(a1)(b1)+(a2)(b2)+(a3)(b3)(b1)2+(b2)2+(b3)2]
    • A ‾ \overline{A} A对角线:

      • A ‾ . d i a g ( ) \overline{A}.diag() A.diag() = [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2}\end{array}}\right] [(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2]
    • 对对角线矩阵进行一些变换

      • A ‾ 1 \overline{A}{_1} A1 = [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] T \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2}\end{array}}\right]^T [(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2]T [ 1 1 ] \left[{\begin{array}{}1 & 1\end{array}}\right] [11]
      • = [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(a{_1})^2+(a{_2})^2+(a{_3})^2} \\ {(b{_1})^2+(b{_2})^2+(b{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2} \end{array}}\right] [(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2]
      • A ‾ 2 \overline{A}{_2} A2 = [ 1 1 ] T \left[{\begin{array}{}1 & 1\end{array}}\right]^T [11]T [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2}\end{array}}\right] [(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2]
      • = [ ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ( a 1 ) 2 + ( a 2 ) 2 + ( a 3 ) 2 ( b 1 ) 2 + ( b 2 ) 2 + ( b 3 ) 2 ] \left[{\begin{array}{}{(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2} \\ {(a{_1})^2+(a{_2})^2+(a{_3})^2} & {(b{_1})^2+(b{_2})^2+(b{_3})^2} \end{array}}\right] [(a1)2+(a2)2+(a3)2(a1)2+(a2)2+(a3)2(b1)2+(b2)2+(b3)2(b1)2+(b2)2+(b3)2]
    • 经过了上面的处理,我们就可以得出上述的公式了

      • d i s t ( A ) = A ‾ 1 + A ‾ 2 − 2 A ‾ dist(A) = {\overline{A}{_1}} + {\overline{A}{_2}} – {\overline{2A}} dist(A)=A1+A22A
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/150907.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • matlab画圆的命令_matlab画矩形和matlab画圆「建议收藏」

    matlab画圆的命令_matlab画矩形和matlab画圆「建议收藏」今天在用MATLAB编程的时候,用到了已知圆心和半径,画圆的程序,上网搜了一下,主要有下面两种,在这里总结一下:(这里我都是放在函数中做的,想画多个圆的话可以加个for循环调用一下函数,或者直接用向量做都是可以的,在这里我不在多说)第一种:function[]=circle(x,y,r)rectangle(‘Position’,[x-r,y-r,2*r,2*r],’Curvature’,…

  • maven的使用教程_maven使用教程

    maven的使用教程_maven使用教程maven面临的问题一个项目就是一个工程。如果项目非常大,最好是每一个模块对应一个工程。借助maven可以将一个项目拆分成多个工程项目中需要的jar必须要手动”复制”,”粘贴”到WEB-INF/lib目录下,带来的问题是:同样的jar包文件重复出现在不同的项目工程中,浪费空间。maven可以将jar仅仅保存在”仓库”中,有需要使用的工程”引用”这个文件接口,并不需要真的把jar包复制过来jar包需要别人替我们准备好,或到官网下载。不同技术的官网提供jar包下载的形式是五花八门的,有些技术的官网就是

  • Mysql ID生成器

    Mysql ID生成器Mysql可以作为分布式序列号生成器,写下笔记以防忘记。需要一张表server_id_table表中的role为服务器角色名,nextId为当前Id,startId为开始Id,endId为结束Id。使用下列sql语句可以实现分布式Id生成器的功能,而且是线程安全的

  • JS页面跳转使地址后面不显示参数[通俗易懂]

    背景使用window.open()和window.location.href跳转时,新页面的地址栏会显示参数,如下:http://127.0.0.1:8080/website-cms/admin/article/edit?action=add。这样会暴露参数内容,用户可以修改地址栏的参数。如果提交的参数修改可能会出现业务上的错误,甚至可以跳过权限验证,实现本来没有的权限。案例以…

  • pycharm安装第三方库报错[通俗易懂]

    pycharm安装第三方库报错[通俗易懂]清华源网址https://pypi.tuna.tsinghua.edu.cn/simple/阿里源https://mirrors.aliyun.com/pypi/simple/删除一个源,保留另一个

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号