弄懂SPI接口

弄懂SPI接口SPI(SerialPeripheralInterface,串行外设接口)是Motorola公司提出的一种同步串行数据传输标准,在很多器件中被广泛应用。1.接口SPI接口经常被称为4线串行总线,以主/从方式工作,数据传输过程由主机初始化。如图1所示,其使用的4条信号线分别为:1)SCLK:串行时钟,用来同步数据传输,由主机输出;2) MOSI:主机输出从

大家好,又见面了,我是你们的朋友全栈君。

SPI(Serial Peripheral Interface,串行外设接口)是Motorola公司提出的一种同步串行数据传输标准是一种高速的,全双工,同步的通信总线在很多器件中被广泛应用。

SPI相关缩写

SS: Slave Select,选中从设备,片选。

CKPOL (Clock Polarity) = CPOL = POL = Polarity = (时钟)极性 

CKPHA (Clock Phase)   = CPHA = PHA = Phase = (时钟)相位

SCK = SCLK = SCL = SPI的时钟(Serial Clock)

Edge = 边沿,即时钟电平变化的时刻,即上升沿(rising edge)或者下降沿(falling edge)。

对于一个时钟周期内,有两个edge,分别称为:

Leading edge = 前一个边沿 第一个边沿,对于开始电压是1,那么就是1变成0的时候,对于开始电压是0,那么就是0变成1的时候;

Trailing edge = 后一个边沿 第二个边沿,对于开始电压是1,那么就是0变成1的时候(即在第一次1变成0之后,才可能有后面的0变成1),对于开始电压是0,那么就是1变成0的时候;


接口

SPI接口经常被称为4线串行总线,以主/从方式工作,数据传输过程由主机初始化

如图1所示,其使用的4条信号线分别为:

1) SCLK:串行时钟,用来同步数据传输,由主机输出;

2) MOSI:主机输出从机输入(Master Output Slaver Input)数据线;

3) MISO:主机输入从机输出数据线;

4) SS:片选线,低电平有效,由主机输出。

在SPI总线上,某一时刻可以出现多个从机,但只能存在一个主机,主机通过片选线来确定要通信的从机。这就要求从机的MISO口具有三态特性,使得该口线在器件未被选通时表现为高阻抗。

SPI由于接口相对简单(只需要4根线),用途算是比较广泛,主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。

即一个SPI的Master通过SPI与一个从设备,即上述的那些Flash,ADC等的Slaver SPI进行通讯。而主从设备之间通过SPI进行通讯,首先要保证两者之间时钟SCLK要一致,互相要商量好了,要匹配,否则,就没法正常通讯了,即保证时序上的一致才可正常讯而这里的SPI中的时钟和相位,指的就是SCLk时钟的特性,即保证主从设备两者的时钟的特性一致了,以保证两者可以正常实现SPI通讯。

弄懂SPI接口

数据传输

在一个SPI时钟周期内,会完成如下操作:

1) 主机通过MOSI线发送1位数据,从机通过该线读取这1位数据;

2) 从机通过MISO线发送1位数据,主机通过该线读取这1位数据。

这是通过移位寄存器来实现的。如图2所示,主机和从机各有一个移位寄存器,且二者连接成环。随着时钟脉冲,数据按照从高位到低位的方式依次移出主机寄存器和从机寄存器,并且依次移入从机寄存器和主机寄存器。当寄存器中的内容全部移出时,相当于完成了两个寄存器内容的交换。

弄懂SPI接口

时钟极性和时钟相位

在SPI操作中,最重要的两项设置就是时钟极性(CPOL或UCCKPL)和时钟相位(CPHA或UCCKPH)。时钟极性设置时钟空闲时的电平,时钟相位设置读取数据和发送数据的时钟沿。

主机和从机的发送数据是同时完成的,两者的接收数据也是同时完成的。所以为了保证主从机正确通信,应使得它们的SPI具有相同的时钟极性和时钟相位。

CPOL极性

先说什么是SCLK时钟的空闲时刻,其就是当SCLK在发送8bit比特数据之前和之后的状态,与此对应的,SCLK在发送数据的时候,就是正常的工作的时候,有效active的时刻了。

先说英文,其精简解释为:Clock Polarity = IDLE state of SCK

再用中文详解:

SPICPOL,表示当SCLK空闲idle的时候,其电平的值是低电平0还是高电平1

CPOL=0,时钟空闲idle时候的电平是低电平,所以当SCLK有效的时候,就是高电平,就是所谓的active-high

CPOL=1,时钟空闲idle时候的电平是高电平,所以当SCLK有效的时候,就是低电平,就是所谓的active-low

CPHA相位

首先说明一点,capture strobe = latch = read = sample,都是表示数据采样,数据有效的时刻。

相位,对应着数据采样是在第几个边沿(edge),是第一个边沿还是第二个边沿,0对应着第一个边沿,1对应着第二个边沿。

CPOL=0

对于CPHA=0idle时候的是低电平,第一个边沿就是从低变到高,所以是上升沿;

对于CPHA=1idle时候的是低电平,第二个边沿就是从高变到低,所以是下降沿;

CPOL=1

对于CPHA=0idle时候的是高电平,第一个边沿就是从高变到低,所以是下降沿;

对于CPHA=1idle时候的是高电平,第二个边沿就是从低变到高,所以是上升沿;

用图文形式表示,更加容易看懂:

弄懂SPI接口

CKPCKE

CKPCKE是MicrochipPIC系列芯片中的说法。

1CKPClock Polarity Select,就是极性=CPOL

CKP,虽然名字和CPOL不一样,但是都是指时钟极性的选择,定义也一样

CKP: Clock Polarity Select bit

1 = Idle state for clock (CK) is a high level

0 = Idle state for clock (CK) is a low level

所以不多解释。

2CKEClock Edge Select,就是相位=CPHA

CKE: SPI Clock Edge Select bit

1 = Transmit occurs on transition from active to Idle clock state

0 = Transmit occurs on transition from Idle to active clock state

意思是:

1 =(数据)传输发生在时钟从有效状态转到空闲状态的那一时刻

0 =(数据)传输发生在时钟从空闲状态转到有效状态的那一时刻

其中,数据传输的时刻,即上图中标出的“数据transmit传输的时刻”。

CKE的定义也跟CPHA相同。

所以,CKPCKE所对应的取值的含义为:

When CKP = 0:

CKE=0 => Data transmitted on rising edge of SCKidle时候是低电平,从空闲到有效,就是从低电平到高电平,所以是上升沿)

CKE=1 => Data transmitted on falling edge of SCK(idle时候是低电平,从有效到空闲,就是从高电平到低电平,所以是下降沿)

When CKP = 1:

CKE=0 => Data transmitted on falling edge of SCKidle时候是高电平,从空闲到有效,就是从高电平到低电平,所以是下降沿)

CKE=1 => Data transmitted on rising edge of SCKidle时候是高电平,从有效到空闲,就是电平到电平,所以是上升沿

举例来说,分别选取MSP430控制器和OLED驱动SH1101A为主从机,图3和图4为它们的SPI时序。由图4可知,SH1101A的SPI时钟空闲时为高电平,并且在后时钟沿接收数据(后时钟沿在数据的中间部位)则MSP430控制器SPI的设置应与此保持一致。从图3中可以看出,要使得时钟在空闲时为高电平,应将UCCKPL置1;要使得在后时钟沿接收数据,应将UCCKPH清零。

弄懂SPI接口

弄懂SPI接口

下面再列出其他一些地方找到的,常见的SPI的四种模式的时序图,供参考:

弄懂SPI接口





弄懂SPI接口

如何看懂和记忆CPOLCPHA

所以,关于在其他地方介绍的,看似多么复杂难懂难记忆的CPOLCPHA,其实经过上面解释,就肯容易看懂了:

去看时序图,如果时钟SCLK的起始电平是0,那么CPOL=0,如果是1,那么CPOL=1

然后看数据采样时刻,即时序图数据线上的数据矩形区域的中间所对应的位置,对应到上面SCLK时钟的位置,对应着是第一个边沿或是第二个边沿,即CPHA01。(对应的是上升沿还是下降沿,要根据对应的CPOL的值,才能确定)。

即:

1)如何判断CPOLSCLK的空闲时候电压是0还是1,决定了CPOL0还是1

2)如何判断CPHA:而数据采样时刻对应着的SCLK的电平,是第一个边沿还是第二个边沿,对应着CPHA0还是1

软件中如何设置SPI的极性和相位

SPI分主设备和从设备,两者通过SPI协议通讯。

设置SPI的模式,是从设备的模式,决定了主设备的模式。

所以要先去搞懂从设备的SPI是何种模式,然后再将主设备的SPI的模式,设置和从设备相同的模式,即可正常通讯。

对于从设备的SPI是什么模式,有两种:

1)固定的,设备硬件决定的。

SPI从设备,具体是什么模式,相关的datasheet中会有描述,需要自己去datasheet中找到相关的描述,即:

关于SPI从设备,在空闲的时候,是高电平还是低电平,即决定了CPOL0还是1

然后再找到关于设备是在上升沿还是下降沿去采样数据,这样就是,在定了CPOL的值的前提下,对应着可以推算出CPHA0还是1了。

举例1

CC2500 – Low-Cost Low-Power 2.4 GHz RF TransceiverdatasheetSPI的时序图是:

弄懂SPI接口

从图中可以看到,最开始的SCLK和结束时候的SCLK,即空闲时刻的SCLK,是低电平,推导出CPOL=0,然后可以看到数据采样的时候,即数据最中间的那一点,对应的是SCLK的第一个边沿,所以CPHA=0(此时对应的是上升沿)。


 

举例2

SSD1289 – 240 RGB x 320 TFT LCD Controller Driverdatasheet中提到:

SDI is shifted into 8-bit shift register on everyrising edge of SCK in the order of data bit 7, data bit 6 …… data bit 0.

意思是,数据是在上升沿采样,所以可以断定是CPOL=0CPHA=0,或者CPOL=1CPHA=1的模式,但是至于是哪种模式。

按理来说,接下来应该再去确定SCLK空闲时候是高电平还是低电平,用以确定CPOL0还是1,但是datasheet中没有提到这点。

所以,此处,目前不太确定,是两种模式都支持,还是需要额外找证据却确定CPOL0还是1.


 

2)可配置的,由软件自己设定

从设备也是一个SPI控制器,4种模式都支持,此时只要自己设置为某种模式即可。

然后知道了从设备的模式后,再去将SPI主设备的模式,设置为和从设备模式一样,即可。


 

对于如何配置SPICPOLCPHA的话,不多细说,多数都是直接去写对应的SPI控制器中对应寄存器中的CPOLCPHA那两位,写0或写1即可。

举例:

此处遇到的C8051F347中的SPI就是一个SPIcontroller控制器,即支持软件配置CPOLCPHA的值,四种模式都支持,此处C8051F347作为SPI从设备,设置了CPOL=1CPHA=0的模式,因此,此处对应主芯片Blackfin F537中的SPI控制器,作为Master主设备,其SPI的模式也要设置为CPOL=1CPHA=0

优缺点

SPI接口具有如下优点:

1) 支持全双工操作;

2) 操作简单;

3) 数据传输速率较高。

同时,它也具有如下缺点:

1) 需要占用主机较多的口线(每个从机都需要一根片选线);

2) 只支持单个主机。


http://www.cnblogs.com/king-77024128/articles/2203207.html


http://blog.chinaunix.net/uid-20620288-id-3164384.html

http://www.cnblogs.com/hnrainll/archive/2010/12/14/1905175.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/150365.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 详解布隆过滤器的原理和实现「建议收藏」

    详解布隆过滤器的原理和实现「建议收藏」为什么需要布隆过滤器想象一下遇到下面的场景你会如何处理: 手机号是否重复注册 用户是否参与过某秒杀活动 伪造请求大量id查询不存在的记录,此时缓存未命中,如何避免缓存穿透 针对以上问题常规做法是:查询数据库,数据库硬扛,如果压力并不大可以使用此方法,保持简单即可。改进做法:用list/set/tree维护一个元素集合,判断元素是否在集合内,时间复杂度或空间复杂度会比较高。如果是微服务的话可以用redis中的list/set数据结构,数据规模非常大此方案

  • 报错415怎么解决_服务器请求415

    报错415怎么解决_服务器请求415415错误

    2022年10月31日
  • iOS开发之duplicate symbols for architecture x86_64错误

    iOS开发之duplicate symbols for architecture x86_64错误

  • python多线程的几种方法

    python多线程的几种方法python多线程编程Python多线程编程中常用方法:1、join()方法:如果一个线程或者在函数执行的过程中调用另一个线程,并且希望待其完成操作后才能执行,那么在调用线程的时就可以使用被调线程

  • 如何开启MySQL慢查询日志

    如何开启MySQL慢查询日志摘要:前言数据库日志记录了用户对数据库的各种操作及数据库发生的各种事件。能帮助数据库管理员追踪、分析问题。MySQL提供了错误日志、二进制日志、查询日志、慢查询日志。MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响应时间超过阀值(long_query_time,单位:秒)的SQL语句。前言数据库日志记录了用户对数据库的各种操作及数据库发生的各种事件。能帮助数据…

    2022年10月11日
  • Linux下的5款主流高可用集群软件介绍[通俗易懂]

    Linux下的5款主流高可用集群软件介绍[通俗易懂]Linux集群主要分成三大类:高可用集群(HighAvailabilityCluster)、负载均衡集群(LoadBalanceCluster)、科学计算集群(HighPerformanceComputingCluster)。其中高可用集群具有保障应用程序持续提供服务的能力,可以将因软、硬件、人为造成的故障对业务的影响降低到最小程度。在高可用集群中,最常见的就是两个节点做成的HA集群,有很多通俗的名称,比如“双机热备”、“双机互备”、“双机”。而在Linux平台下常见的高可用集群软件有

    2022年10月16日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号