实现yolo3模型训练自己的数据集总结

实现yolo3模型训练自己的数据集总结   经过两天的努力,借鉴网上众多博客,在自己电脑上实现了使用yolo3模型训练自己的数据集并进行测试图片。本文主要是我根据下面参考文章一步步实施过程的总结,可能没参考文章中那么详细,但是会包含一些参考文章中没提及的容易掉坑的小细节,建议读者结合参考文章一起看,一步步走即可。首先贴出本文主要参考的文章以及代码出处:代码:https://github.com/qqwweee/keras-yo…

大家好,又见面了,我是你们的朋友全栈君。

     经过两天的努力,借鉴网上众多博客,在自己电脑上实现了使用yolo3模型训练自己的数据集并进行测试图片。本文主要是我根据下面参考文章一步步实施过程的总结,可能没参考文章中那么详细,但是会包含一些参考文章中没提及的容易掉坑的小细节,建议读者结合参考文章一起看,一步步走即可。首先贴出本文主要参考的文章以及代码出处:

代码:https://github.com/qqwweee/keras-yolo3

参考文章:https://blog.csdn.net/patrick_Lxc/article/details/80615433

一.下载项目源码,进行快速测试

从上面代码链接处下载整个项目源码。下载好后,首先根据github中指引进行快速测试。

实现yolo3模型训练自己的数据集总结

yolo web:https://pjreddie.com/darknet/yolo

对应操作如下(命令行操作):

1.  wget https://pjreddie.com/media/files/yolov3.weights                                  

注释:这里wget为linux命令,windows系统可以直接访问后面链接来下载yolov3权重文件,也可以访问yolo web去下载。

2. python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5

注释:执行convert.py文件,此为将darknet的yolo转换为可以用于keras的h5文件,生成的h5被保存在model_data下。命令中的convert.py和yolov3.vfg克隆下来后已经有了,不需要单独下载。

3.用已经被训练好的yolo.h5进行图片识别测试。执行:python yolo.py

执行后会让你输入一张图片的路径,因为我准备的图片(网上随便找的)放在yolo.py同级目录,所以直接输入图片名称,没有加路径。

过程和结果如下图所示:

实现yolo3模型训练自己的数据集总结

实现yolo3模型训练自己的数据集总结

以上结果表明快速开始项目成功,接下来我们进行搭建自己的数据集,进行模型的训练以及训练后模型用于测试图片识别。

二.准备自己的数据集

可以按照上面参考文章里面做法下载VOC数据集,然后清空里面内容,保留文件目录结构。也可以直接手动创建如下目录结构:

实现yolo3模型训练自己的数据集总结

这里面用到的文件夹是Annotation、ImageSets和JPEGImages。注意:需要在VOC2007再创建一个上级目录VOCdevkit。

     其中文件夹Annotation中主要存放xml文件,每一个xml对应一张图像,并且每个xml中存放的是标记的各个目标的位置和类别信息,命名通常与对应的原始图像一样;而ImageSets我们只需要用到Main文件夹,这里面存放的是一些文本文件,通常为train.txt、test.txt等,该文本文件里面的内容是需要用来训练或测试的图像的名字;JPEGImages文件夹中放我们已按统一规则命名好的原始图像。

      原始图片就不解释了,而与原始图片一 一对应的xml文件,可以使用LabelImg工具,具体使用方法百度即可。工具可以从参考的博客中的附带地址下载,也可以自己网上找,很容易。

     将自己的图片以及xml按照要求放好后,在VOC2007的同级目录下建立convert_to_txt.py文件,拷贝下面的代码,然后运行该py文件。该代码是读取上面的xml文件中图片名称,并保存在ImageSets/Main目录下的txt文件中。注意:此处txt中仅有图片名称。

代码:

import os
import random

trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets\Main'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
fval = open('ImageSets/Main/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftest.write(name)
        else:
            fval.write(name)
    else:
        ftrain.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

    然后,回到从github上下载的源码所在目录,执行其中的voc_annotation.py,会在当前目录生成新的三个txt文件,手动去掉名称中2007_部分。当然,可以自己进入voc_annotation.py修改代码,使生成的txt文件名中不包含2007_。

注意:一开始VOC2007,也可以叫VOC2008之类,这样此处的txt就会成为2008_xxx.txt。此外,有一个很关键的地方需要注意,必须修改,不然此处生成的三个新的txt文件中仅仅比前面Main下的txt中多了图片路径而已,并不包含框box的信息,这样的话在后面的训练步骤,由于没有框的信息,仅仅是图片路径和名称信息,是训练不好的,即使可以得到训练后的h5文件,但是当用这样的h5文件去执行类似前面所说的测试图片识别,效果就是将整幅图框住,而不是框住你所要识别的部分。

故所要做的是:在执行voc_annotation.py之前,打开它,进行修改。将其中最上面的sets改为你自己的,比如2012改为我得2007,要和前面的目录年份保持一致。还需要将最上面的classes中的内容,改为你自己xml文件中object属性中name属性的值。你有哪些name值,就改为哪些,不然其中读取xml框信息的代码就不会执行。

实现yolo3模型训练自己的数据集总结

上面是我的xml中一个object截图,这里的name实际上为你用LableIma工具画框时候给那个框的命名值。

至此,自己数据集的准备工作就完成了。

三.修改一些文件,然后执行训练

首先是修改model_data下的文件,放入你的类别,coco,voc这两个文件都需要修改。这里的命名会成为最终检测图片时候框的框上的名称。

其次是yolov3.cfg文件

这一步事后我和同学讨论了下,得出的结论是,从0开始训练自己的模型,则不需要下面的修改步骤,而如果想用迁移学习思想,用已经预训练好的权重接着训练,则需要下面的修改步骤。

IDE里直接打开cfg文件,ctrl+f搜 yolo, 总共会搜出3个含有yolo的地方。

每个地方都要改3处,filters:3*(5+len(classes));

                                    classes: len(classes) = 1,我只识别一种,所以为1

                                    random:原来是1,显存小改为0   

如果要用预训练的权重接着训练,则需要执行以下代码:然后执行原train.py就可以了。原train.py中有加载预训练权重的代码,并冻结部分层数,在此基础上进行训练。可以修改冻结层数。

python convert.py -w yolov3.cfg yolov3.weights model_data/yolo_weights.h5

这个在github和参考的文章中均提到。

如果不用预训练的权重,上一步不用执行(执行也没影响),但是下面的train.py需要修改,改为如下所示(代码出处为上文提到的参考博客中):直接复制替换原train.py即可

"""
Retrain the YOLO model for your own dataset.
"""
import numpy as np
import keras.backend as K
from keras.layers import Input, Lambda
from keras.models import Model
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping

from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
from yolo3.utils import get_random_data


def _main():
    annotation_path = 'train.txt'
    log_dir = 'logs/000/'
    classes_path = 'model_data/voc_classes.txt'
    anchors_path = 'model_data/yolo_anchors.txt'
    class_names = get_classes(classes_path)
    anchors = get_anchors(anchors_path)
    input_shape = (416,416) # multiple of 32, hw
    model = create_model(input_shape, anchors, len(class_names) )
    train(model, annotation_path, input_shape, anchors, len(class_names), log_dir=log_dir)

def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'):
    model.compile(optimizer='adam', loss={
        'yolo_loss': lambda y_true, y_pred: y_pred})
    logging = TensorBoard(log_dir=log_dir)
    checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",
        monitor='val_loss', save_weights_only=True, save_best_only=True, period=1)
    batch_size = 10
    val_split = 0.1
    with open(annotation_path) as f:
        lines = f.readlines()
    np.random.shuffle(lines)
    num_val = int(len(lines)*val_split)
    num_train = len(lines) - num_val
    print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))

    model.fit_generator(data_generator_wrap(lines[:num_train], batch_size, input_shape, anchors, num_classes),
            steps_per_epoch=max(1, num_train//batch_size),
            validation_data=data_generator_wrap(lines[num_train:], batch_size, input_shape, anchors, num_classes),
            validation_steps=max(1, num_val//batch_size),
            epochs=500,
            initial_epoch=0)
    model.save_weights(log_dir + 'trained_weights.h5')

def get_classes(classes_path):
    with open(classes_path) as f:
        class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names

def get_anchors(anchors_path):
    with open(anchors_path) as f:
        anchors = f.readline()
    anchors = [float(x) for x in anchors.split(',')]
    return np.array(anchors).reshape(-1, 2)

def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
            weights_path='model_data/yolo_weights.h5'):
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body:
            # Do not freeze 3 output layers.
            num = len(model_body.layers)-3
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    return model
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
    n = len(annotation_lines)
    np.random.shuffle(annotation_lines)
    i = 0
    while True:
        image_data = []
        box_data = []
        for b in range(batch_size):
            i %= n
            image, box = get_random_data(annotation_lines[i], input_shape, random=True)
            image_data.append(image)
            box_data.append(box)
            i += 1
        image_data = np.array(image_data)
        box_data = np.array(box_data)
        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
        yield [image_data, *y_true], np.zeros(batch_size)

def data_generator_wrap(annotation_lines, batch_size, input_shape, anchors, num_classes):
    n = len(annotation_lines)
    if n==0 or batch_size<=0: return None
    return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)

if __name__ == '__main__':
    _main()    

    我是在cpu版本tensorflow上跑的,故特别慢,有运算资源的就不说了,如果资源有限,建议少弄些图片和xml文件,这样最后的txt文件中数据就少,跑起来轻松点。其次可以修改train.py中的迭代次数epochs的值,该值原作者设置的为500;也可以修改batch_size = 10的大小。

注意:我第一次训练时候,确实在目录下自动生成了logs文件夹,并在其中生成000文件夹,然后里面放的是自己训练好的h5文件。但是后来我调试代码,删除该目录,再次训练时,报如下错误:

实现yolo3模型训练自己的数据集总结

 

此时只需要手动创建logs文件夹和其内的000文件夹即可。嫌名字不好,可以自己修改train.py文件,改里面的保存目录。

下面为成功测试截图:

实现yolo3模型训练自己的数据集总结

四.用自己训练的h5文件进行测试

先修改yolo.py文件中的模型路径,如下所示,改为自己训练后生成的h5文件路径。

实现yolo3模型训练自己的数据集总结

然后执行,测试过程和前面所讲一样,因为我得没怎么训练,就不贴出很挫的测试效果图了。在最初没有框信息的txt文件训练后,执行测试很慢,因为训练时候根本不知道要框什么,改为正常txt后,训练后的模型进行测试,速度就会很快。

 

 

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/150089.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 算法的时间与空间复杂度(一看就懂)

    算法的时间与空间复杂度(一看就懂)算法(Algorithm)是指用来操作数据、解决程序问题的一组方法。对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别。那么我们应该如何去衡量不同算法之间的优劣呢?主要还是从算法所占用的「时间」和「空间」两个维度去考量。 时间维度:是指执行当前算法所消耗的时间,我们通常用「时间复杂度」来描述。 空间维度:是指执行当前算…

  • Nelder–Mead method

    Nelder–Mead method

  • 机器学习之模型评估

    '没有测量,就没有科学'这是科学家门捷列夫的名言。在计算机科学特别是机器学习领域中,对模型的评估同样至关重要,只有选择与问题相匹配的评估方法,才能快速地发现模型选择或训练过程中出现的问

    2021年12月30日
  • ckeditor 在C#中使用

    ckeditor 在C#中使用

  • phpstorm激活码2022.01.13(JetBrains全家桶)2022.03.06

    (phpstorm激活码2022.01.13)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

  • ip addr 和 ifconfig「建议收藏」

    ip addr 和 ifconfig「建议收藏」你知道怎么查看IP地址吗?当面试听到这个问题的时候,面试者常常会觉得走错了房间。我面试的是技术岗位啊,怎么问这么简单的问题?的确,即便没有专业学过计算机的人,只要倒腾过电脑,重装过系统,大多也会知道这个问题的答案:在Windows上是ipconfig,在Linux上是ifconfig。那你知道在Linux上还有什么其他命令可以查看IP地址吗?答案是ipad…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号