C51浮点数显示、浮点数表示方法

C51浮点数显示、浮点数表示方法C51中的浮点数存储方式–n年前曾在c51bbs论坛中发布过Float浮点形,它是符合IEEE-754标准的单精度浮点形数据,在十进制中具有7位有效数字。FLOAT型据占用四个字节(32位二进制数),在内存中的存放格式如下:字节地址(由低到高)0123浮点数内容MMMMMMMMMMMMMMMMEMMMMMMMSEEEEEEE其中,S为符号位,存放在最高字节

大家好,又见面了,我是你们的朋友全栈君。

C51中的浮点数存储方式
–n年前曾在c51bbs论坛中发布过

Float 浮点形,它是符合IEEE-754标准的单精度浮点形数据,在十进制中具有7位有效数字。FLOAT型据占用四个字节(32位二进制数),在内存中的存放格式如下:
字节地址(由低到高)0 1 2 3
浮点数内容 MMMMMMMM MMMMMMMM E MMMMMMM S EEEEEEE
其中,S为符号位,存放在最高字节的最高位。“1”表示负,“0”表示正。E为阶码,占用8位二进制数,存放在高两个字节中。注意,阶码E值是以2为底的指数再加上偏移量127,这样处理的目的是为了避免出现负的阶码值,而指数是可正可负的。阶码E的正常取值范围是1~254,从而实际指数的取值范围为-126-127。M为尾数的小数部分,用23位二进制数表示,存放在低三个字节中。尾数的整数部分永远为1,因此不予保存,但它是隐含的。小数点位于隐含的整数位“1”的后面。

例如浮点数124.75 = 42F98000H 在内存中的存放格式为:
字节地址 +0 +1 +2 +3
浮点数内容 00000000 10000000 1 1111001 0 1000010

124.75D=1111100.11B=1.11110011*2E6
阶码=6D+127D=133D=10000101B
符号位=0

参考示例程序一:
typedef union{

float flt;
unsigned char fltc[4];
} Float;

main()
{

Float a;
unsigned char i;
a.flt=124.75;
for(i = 0; i < 4; i++)
printf(“%x\t”,a.fltc[i]);
printf(“\n”);
}

参考示例程序二:
main()
{

float a;
unsigned char i;
unsigned char *j;
a=124.75;
j = (unsigned char *)&a;
for(i = 0; i < 4; i++)
printf(“%x\t”,j[i]);
printf(“\n”);
}

 

C51里用4字节存储一个浮点数,格式遵循IEEE-754标准(详见c51.pdf第179页说明)。一 
个浮点数用两个部分表示,尾数和2的幂,尾数代表浮点上的实际二进制数,2的幂代表指 
数,指数的保存形式是一个0到255的8位值,指数的实际值是保存值(0到255)减去127,一个 
范围在-127到+128之间的值,尾数是一个24位值(代表大约7个十进制数),最高位MSB通常是 
1,因此不保存。一个符号位表示浮点数是正或负。 
浮点数保存的字节格式如下: 
地址        +0          +1           +2           +3 
内容    SEEE EEEE   EMMM MMMM    MMMM MMMM    MMMM MMMM 
这里 
S 代表符号位,1是负,0是正 
E 偏移127的幂,二进制阶码=(EEEEEEEE)-127。 
M 24位的尾数保存在23位中,只存储23位,最高位固定为1。此方法用最较少的位数实现了 
较高的有效位数,提高了精度。 
零是一个特定值,幂是0 尾数也是0。 
浮点数-12.5作为一个十六进制数0xC1480000保存在存储区中,这个值如下: 
地址 +0     +1     +2     +3 
内容0xC1   0x48   0x00   0x00 
浮点数和十六进制等效保存值之间的转换相当简单。下面的例子说明上面的值-12.5如何转 
换。 
浮点保存值不是一个直接的格式,要转换为一个浮点数,位必须按上面的浮点数保存格式表 
所列的那样分开,例如: 
地址       +0           +1            +2            +3 
格式   SEEE EEEE    EMMM MMMM     MMMM MMMM     MMMM MMMM 
二进制  11000001     01001000      00000000      00000000 
十六进制   C1           48            00            00 
从这个例子可以得到下面的信息: 
  符号位是1 表示一个负数 
  幂是二进制10000010或十进制130,130减去127是3,就是实际的幂。 
  尾数是后面的二进制数10010000000000000000000 

在尾数的左边有一个省略的小数点和1,这个1在浮点数的保存中经常省略,加上一个1和小数 
点到尾数的开头,得到尾数值如下: 
1.10010000000000000000000 
接着,根据指数调整尾数.一个负的指数向左移动小数点.一个正的指数向右移动小数点.因为 
指数是3,尾数调整如下: 
1100.10000000000000000000 
结果是一个二进制浮点数,小数点左边的二进制数代表所处位置的2的幂,例如:1100表示 
(1*2^3)+(1*2^2)+(0*2^1)+(0*2^0)=12。 
小数点的右边也代表所处位置的2的幂,只是幂是负的。例如:.100…表示(1*2^(-1))+ 
(0*2^(-2))+(0*2^(-2))…=0.5。 
这些值的和是12.5。因为设置的符号位表示这数是负的,因此十六进制值0xC1480000表示- 
12.5。 
浮点数错误信息 
    8051没有包含捕获浮点数错误的中断向量,因此,你的软件必须正确响应这些错误情 
况。 
    除了正常的浮点数值,还包含二进制错误值。这些值被定义为IEEE标准的一部分并用在 
正常浮点数操作过程中发生错误的时候。你的代码应该在每一次浮点操作完成后检查可能出 
现的错误。 
        名称        值       含义 
        NaN     0xFFFFFFF   不是一个数 
        +INF    0x7F80000   正无穷(正溢出) 
        -INF    0xFF80000   负无穷(负溢出) 
    你可以使用如下的联合体(union)存储浮点数。 
    union f {
 

      float          f;  //浮点值 
      unsigned long ul;  //无符号长整数 
    }; 
    这个union包含一个float和一个unsigned long以便执行浮点数**算并响应IEEE错误 
状态。 
     
    以上是KEIL在线帮助的中译文,下面我们讨论如何显示浮点数。 
     
    尾数为24bit,最高可表达的整数值为2^24-1=16777215,也就是说,小于等于16777215 
的整数可以被精确显示。这决定了十进制浮点数的有效位数为7位,10^7<16777215<10^8, 
10的7次方以内的数小于16777215,可以精确表示。使用科学记数法时,整数部分占1位,所 
以小数部分最大占7-1=6位,即最大有6位十进制精度。 
    长整形数和浮点数都占4字节,但表示范围差别很大。浮点数的范围为+-1.175494E-38 
到+-3.402823E+38,无符号长整形数范围为0到4294967295。显示浮点数要用到长整形数保 
存数据,可他们范围差这么多,怎么办呢? 
    仔细观察十进制浮点数的显示,有一个尾数和一个阶码,由上面论证可知32位IEEE-754 
浮点数最大有效数字为7位十进制数,超出此范围的数字有截断误差,不必理会,因此,浮 
点数尾数能够放在长整形数里保存。阶码为-38到38,一个char型变量就可以保存。 
    综上所述,以10^7的最大跨度为窗口(小于10^7也可以,如:10,100…10000等,但决 
不能大于它,那样会超出精度范围),定位浮点数的量级,然后取出7位尾数的整数值存于长 
整形数里,再调整阶码,就可以精确显示此浮点数。 
    量级尺度如下: 
      (-38)-(-35)-(-28)-(-21)-(-14)-(-7)-(0)-(7)-(14)-(21)-(28)-(35)-(38) 
    请严格按照KEIL手册给出的浮点数范围显示,因为数值空间没有完全使用,有些值用于 
错误指示和表示正负无穷。小于1.175494E-38的数仍可以显示一些,但最好不用,以免出 
错。我采用直接判断的方法,剔除此种情况。 
    在计算机里结合律不成立,(a*b)*c!=a*(b*c),原则是先让计算结果值动态范围小的两 
个数运算,请注意程序里的写法。 
    注:(1E38/b)*1E6不要写成1E44/b,因为无法在32位浮点数里保存1E44,切记! 
    计算机使用二进制数计算,能有效利用电子器件高速开关的特性,而人习惯于十进制数 
表示,二进制和十进制没有方便的转换方法,只能通过大量计算实现,浮点数的十进制科学 
记数法显示尤其需要大量的运算,可见,显示一个浮点数要经过若干次浮点运算,没有必要 
就不要显示,否则,花在显示上的时间比计算的耗时都要多得多。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/149602.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Qt之log数据展示模块简要实现

    Log模块主要用于实时测井数据的显示和测后曲线数据的预览和打印,为更好的展示对Qt中相关知识点的应用,特以Log模块为例对其进行简要实现。内容导图:一、功能需求1、界面效果图Log模块实现曲线

    2021年12月29日
  • javabean总结

    javabean总结

    2021年11月30日
  • vue devtools使用教程_vue debug

    vue devtools使用教程_vue debug一般在utils文件夹下api.js文件里面写接口,接口环境判断varhref=window.location.href//两者都可以拿到当前运行URL链接//varhost=window.location.hostlet_ipcc_cst;const_sysServer=(/(creditcard.ecitic.com)/i.test(location.origin))?’https://creditcard.ecitic.com’:’https://e.test.ban

  • pycharm安装cv2失败_pycharm安装cv2失败

    pycharm安装cv2失败_pycharm安装cv2失败网上找了很多教程都没成功!window764位系统python3.6pycharmctrl+alt+s找到opencv-python直接安装完全没问题。

  • Pycharm中安装Pygame方法「建议收藏」

    Pycharm中安装Pygame方法「建议收藏」本文转自:https://blog.csdn.net/zhangffyy/article/details/78524592第一步:打开Pycharm第二步:点File-&amp;amp;amp;gt;DefaultSettings-&amp;amp;amp;gt;ProjectInterpreter-&amp;amp;amp;gt;点加号第三步:搜索Pygame-&amp;amp;amp;gt;InstallPackage然后就安装好了,新建一个p

  • 小白入门NAS—快速搭建私有云教程系列(一)[通俗易懂]

    小白入门NAS—快速搭建私有云教程系列(一)[通俗易懂]什么是NAS在日常的工作生活中,我们有大量的资料、文件需要存储在电脑或者其他终端设备中,但是这种方式需要电脑配备高容量的硬盘,而且需要随时随地的带着,这样是不是很麻烦?那么,今天,我来介绍一种家庭私有云—NAS,通过NAS,我们可以随时随地的通过网页端的方式去访问我们已经存储在NAS里面的文件。那么,什么是NAS?我们先来看下官方一点的回答。NAS(NetworkAttachedSt…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号