详解 YOLO3

详解 YOLO3YOLOv3没有太多的创新,主要是借鉴一些好的方案融合到YOLO里面。不过效果还是不错的,在保持速度优势的前提下,提升了预测精度,尤其是加强了对小物体的识别能力。本文主要讲v3的改进,由于是以v1和v2为基础,关于YOLO1和YOLO2的部分析请移步YOLOv1深入理解和YOLOv2/YOLO9000深入理解。YOLO3主要的改进有:调整了网络结构;利用多尺度特征进行对象检测;对象…

大家好,又见面了,我是你们的朋友全栈君。

YOLOv3没有太多的创新,主要是借鉴一些好的方案融合到YOLO里面。不过效果还是不错的,在保持速度优势的前提下,提升了预测精度,尤其是加强了对小物体的识别能力。

本文主要讲v3的改进,由于是以v1和v2为基础,关于YOLO1和YOLO2的部分析请移步YOLO v1深入理解YOLOv2 / YOLO9000 深入理解

YOLO3主要的改进有:调整了网络结构;利用多尺度特征进行对象检测;对象分类用Logistic取代了softmax。

新的网络结构Darknet-53

在基本的图像特征提取方面,YOLO3采用了称之为Darknet-53的网络结构(含有53个卷积层),它借鉴了残差网络residual network的做法,在一些层之间设置了快捷链路(shortcut connections)。
在这里插入图片描述
图1 Darknet-53[1]

上图的Darknet-53网络采用2562563作为输入,最左侧那一列的1、2、8等数字表示多少个重复的残差组件。每个残差组件有两个卷积层和一个快捷链路,示意图如下:

在这里插入图片描述
图2 一个残差组件[2]

利用多尺度特征进行对象检测

在这里插入图片描述
图3 YOLO3网络结构[3]

在这里插入图片描述

YOLO2曾采用passthrough结构来检测细粒度特征,在YOLO3更进一步采用了3个不同尺度的特征图来进行对象检测。

结合上图看,卷积网络在79层后,经过下方几个黄色的卷积层得到一种尺度的检测结果。相比输入图像,这里用于检测的特征图有32倍的下采样。比如输入是416416的话,这里的特征图就是1313了。由于下采样倍数高,这里特征图的感受野比较大,因此适合检测图像中尺寸比较大的对象。

为了实现细粒度的检测,第79层的特征图又开始作上采样(从79层往右开始上采样卷积),然后与第61层特征图融合(Concatenation),这样得到第91层较细粒度的特征图,同样经过几个卷积层后得到相对输入图像16倍下采样的特征图。它具有中等尺度的感受野,适合检测中等尺度的对象。

最后,第91层特征图再次上采样,并与第36层特征图融合(Concatenation),最后得到相对输入图像8倍下采样的特征图。它的感受野最小,适合检测小尺寸的对象。

9种尺度的先验框

随着输出的特征图的数量和尺度的变化,先验框的尺寸也需要相应的调整。YOLO2已经开始采用K-means聚类得到先验框的尺寸,YOLO3延续了这种方法,为每种下采样尺度设定3种先验框,总共聚类出9种尺寸的先验框。在COCO数据集这9个先验框是:(10×13),(16×30),(33×23),(30×61),(62×45),(59×119),(116×90),(156×198),(373×326)。

分配上,在最小的1313特征图上(有最大的感受野)应用较大的先验框(116×90),(156×198),(373×326),适合检测较大的对象。中等的2626特征图上(中等感受野)应用中等的先验框(30×61),(62×45),(59×119),适合检测中等大小的对象。较大的52*52特征图上(较小的感受野)应用较小的先验框(10×13),(16×30),(33×23),适合检测较小的对象。

在这里插入图片描述

图4 特征图与先验框

感受一下9种先验框的尺寸,下图中蓝色框为聚类得到的先验框。黄色框式ground truth,红框是对象中心点所在的网格。

img

图5 9种先验框尺寸

对象分类softmax改成logistic

预测对象类别时不使用softmax,改成使用logistic的输出进行预测。这样能够支持多标签对象(比如一个人有Woman 和 Person两个标签)。

输入映射到输出

img

图6 输入->输出

不考虑神经网络结构细节的话,总的来说,对于一个输入图像,YOLO3将其映射到3个尺度的输出张量,代表图像各个位置存在各种对象的概率。

我们看一下YOLO3共进行了多少个预测。对于一个416416的输入图像,在每个尺度的特征图的每个网格设置3个先验框,总共有 13133 + 26263 + 5252*3 = 10647 个预测。每一个预测是一个(4+1+80)=85维向量,这个85维向量包含边框坐标(4个数值),边框置信度(1个数值),对象类别的概率(对于COCO数据集,有80种对象)。

对比一下,YOLO2采用13135 = 845个预测,YOLO3的尝试预测边框数量增加了10多倍,而且是在不同分辨率上进行,所以mAP以及对小物体的检测效果有一定的提升。

小结

YOLO3借鉴了残差网络结构,形成更深的网络层次,以及多尺度检测,提升了mAP及小物体检测效果。如果采用COCO mAP50做评估指标(不是太介意预测框的准确性的话),YOLO3的表现相当惊人,如下图所示,在精确度相当的情况下,YOLOv3的速度是其它模型的3、4倍。

img

图7 YOLOv3与其它模型的性能对比[1]

不过如果要求更精准的预测边框,采用COCO AP做评估标准的话,YOLO3在精确率上的表现就弱了一些。如下图所示。

img

图8 YOLOv3与其它模型的性能对比[1]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/149597.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • HDU 1257 最少拦截系统

    HDU 1257 最少拦截系统

  • Leetcode 5:最长回文子串(最详细的解法!!!)[通俗易懂]

    Leetcode 5:最长回文子串(最详细的解法!!!)[通俗易懂]给定一个字符串s,找到s中最长的回文子串。你可以假设s的最大长度为1000。示例1:输入:"babad"输出:"bab"注意:"aba"也是一个有效答案。示例2:输入:"cbbd"输出:"bb"解题思路首先最简单的做法就是暴力解法,通过二重循环确定子串的范围,然后

  • java高并发详解

    java高并发详解转载地址:https://www.cnblogs.com/lr393993507/p/5909804.html  对于开发的网站,如果网站的访问量非常大,那么我们应该考虑相关的、并发访问问题,并发是绝大部分程序员头疼的问题;为了更好的理解并发和同步,先明白两个重要的概念:异步和同步; 1、同步和异…

  • 我为什么会贫穷

    我为什么会贫穷

  • SAE J1939物理层

    SAE J1939物理层在SAEJ1939-11和ISO11898中对商用车使用的线束都是屏蔽双绞线,即为除了电源、地、CAN_H、CAN_L之外还有一个屏蔽线,并且所有ECU的屏蔽线都接到同一个地线上,一般接地点选择在网络的中央位置上。但是在实际使用中,多数整车厂使用的都是非屏蔽双绞线,比较而言,非屏蔽双绞线的EMC特性要差一些,在1939中正常使用屏蔽双绞线一路CAN网络上最多可以接入30个ECU,而对于非屏蔽双

  • 机器学习之局部加权、岭回归和前向逐步回归

    回归是对一个或多个自变量和因变量之间的关系进行建模,求解的一种统计方法,之前的博客中总结了在线性回归中使用最小二乘法推导最优参数的过程和logistic回归,接下来将对最小二乘法、局部加权回归、岭回归

    2021年12月30日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号