ARM的六大类指令集—LDR、LDRB、LDRH、LDM、STR、STRB、STRH、STM

ARM的六大类指令集—LDR、LDRB、LDRH、LDM、STR、STRB、STRH、STM汇编指令:LDR、LDRB、LDRH、STR、STRB、STRH

大家好,又见面了,我是你们的朋友全栈君。

ARM的六大类指令集—LDR、LDRB、LDRH、STR、STRB、STRH

ARM微处理器支持加载/存储指令用于在寄存器和存储器之间传送数据,加载指令用于将存储器中的数据传送到寄存器,存储指令则完成相反的操作。常用的加载存储指令如下:

—  LDR     字数据加载指令

—       LDRB    字节数据加载指令

—  LDRH    半字数据加载指令

—  STR     字数据存储指令

—       STRB    字节数据存储指令

—  STRH    半字数据存储指令

1、LDR指令

LDR指令的格式为:

LDR{条件} 目的寄存器,<存储器地址>

LDR指令用于从存储器中将一个32位的字数据传送到目的寄存器中。该指令通常用于从存储器中读取32位的字数据到通用寄存器,然后对数据进行处理。当程序计数器PC作为目的寄存器时,指令从存储器中读取的字数据被当作目的地址,从而可以实现程序流程的跳转。该指令在程序设计中比较常用,且寻址方式灵活多样,请读者认真掌握。

指令示例:

LDR   R0[R1]                  ;将存储器地址为R1的字数据读入寄存器R0

LDR   R0[R1R2]             ;将存储器地址为R1+R2的字数据读入寄存器R0

LDR   R0[R1,#8]             ;将存储器地址为R1+8的字数据读入寄存器R0

LDR   R0[R1R2]            ;将存储器地址为R1+R2的字数据读入寄存器R0,并将新地址R1R2写入R1

LDR   R0[R1,#8]           ;将存储器地址为R1+8的字数据读入寄存器R0,并将新地址R18写入R1

LDR   R0[R1]R2              ;将存储器地址为R1的字数据读入寄存器R0,并将新地址R1R2写入R1

LDR   R0[R1R2LSL2]   ;将存储器地址为R1R2×4的字数据读入寄存器R0,并将新地址R1R2×4写入R1

LDR   R0[R1]R2LSL2     ;将存储器地址为R1的字数据读入寄存器R0,并将新地址R1R2×4写入R1

2、LDRB指令

LDRB指令的格式为:

LDR{条件}B 目的寄存器,<存储器地址>

LDRB指令用于从存储器中将一个8位的字节数据传送到目的寄存器中,同时将寄存器的高24位清零。该指令通常用于从存储器中读取8位的字节数据到通用寄存器,然后对数据进行处理。当程序计数器PC作为目的寄存器时,指令从存储器中读取的字数据被当作目的地址,从而可以实现程序流程的跳转。

指令示例:

LDRB R0[R1]         ;将存储器地址为R1的字节数据读入寄存器R0,并将R0的高24位清零。

LDRB R0[R1,#8]    ;将存储器地址为R18的字节数据读入寄存器R0,并将R0的高24位清零。

3、LDRH指令

LDRH指令的格式为:

LDR{条件}H 目的寄存器,<存储器地址>

LDRH指令用于从存储器中将一个16位的半字数据传送到目的寄存器中,同时将寄存器的高16位清零。该指令通常用于从存储器中读取16位的半字数据到通用寄存器,然后对数据进行处理。当程序计数器PC作为目的寄存器时,指令从存储器中读取的字数据被当作目的地址,从而可以实现程序流程的跳转。

指令示例:

LDRH R0[R1]         ;将存储器地址为R1的半字数据读入寄存器R0,并将R0的高16位清零。

LDRH R0[R1,#8]    ;将存储器地址为R18的半字数据读入寄存器R0,并将R0的高16位清零。

LDRH R0[R1R2]    ;将存储器地址为R1R2的半字数据读入寄存器R0,并将R0的高16位清零。

4、LDM指令

L的含义仍然是LOAD,即是Load from memory into register

虽然貌似是LDR的升级,但是,千万要注意,这个指令运行的方向和LDR是不一样的,是从左到右运行的。该指令是将内存中堆栈内的数据,批量的赋值给寄存器,即是出栈操作;其中堆栈指针一般对应于SP,注意SP是寄存器R13,实际用到的却是R13中的内存地址,只是该指令没有写为[R13],同时,LDM指令中寄存器和内存地址的位置相对于前面两条指令改变了,下面的例子:

LDMFD     SP! ,   {R0, R1, R2}

实际上可以理解为:    LDMFD     [SP]!,    {R0, R1, R2}

意思为:把sp指向的3个连续地址段(应该是3*4=12字节(因为为r0,r1,r2都是32位))中的数据拷贝到r0,r1,r2这3个寄存器中去。

5、STR指令

STR指令的格式为:

STR{条件} 源寄存器,<存储器地址>

STR指令用于从源寄存器中将一个32位的字数据传送到存储器中。该指令在程序设计中比较常用,且寻址方式灵活多样,使用方式可参考指令LDR

指令示例:

STR   R0[R1],#8    ;将R0中的字数据写入以R1为地址的存储器中,并将新地址R18写入R1

STR   R0[R1,#8]    ;将R0中的字数据写入以R18为地址的存储器中。

6、STRB指令

STRB指令的格式为:

STR{条件}B 源寄存器,<存储器地址>

STRB指令用于从源寄存器中将一个8位的字节数据传送到存储器中。该字节数据为源寄存器中的低8位。

指令示例:

STRB R0[R1]         ;将寄存器R0中的字节数据写入以R1为地址的存储器中。

STRB R0[R1,#8]    ;将寄存器R0中的字节数据写入以R18为地址的存储器中。

7、STRH指令

STRH指令的格式为:

STR{条件}H 源寄存器,<存储器地址>

STRH指令用于从源寄存器中将一个16位的半字数据传送到存储器中。该半字数据为源寄存器中的低16位。

指令示例:

STRH R0[R1]         ;将寄存器R0中的半字数据写入以R1为地址的存储器中。

STRH R0[R1,#8]    ;将寄存器R0中的半字数据写入以R18为地址的存储器中。

8、STM指令

S的含义仍然是STORE,与LDM是配对使用的,其指令格式上也相似,即区别于STR,是将堆栈指针写在左边,而把寄存器组写在右边。

   STMFD      SP!,   {R0}

同样的,该指令也可理解为:  STMFD      [SP]!,   {R0}

意思是:把R0保存到堆栈(sp指向的地址)中。


注:非常感谢博主“希望之光”,文章转自他的博客:http://blog.chinaunix.net/uid-20379123-id-1956584.html





版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/149440.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • zabbix监控哪些指标_zabbix监控爱快

    zabbix监控哪些指标_zabbix监控爱快前言面试中经常会被问到一些技术问题,面试官一方面是看你对于当前技术的点的掌握情况,另一方面是判断你是否在公司里干过,毕竟很多技术只要自学一下就能应付面试。今天我们来聊聊,面试中那些高频的问题,比如zabbix你都监控哪些参数。一.原理解释说到监控,在运维这个行业其实有很多开源的监控方案,目前最常见的就是zabbix+grafana,我工作那时候还是用cacti和nagios的比较多。还记得以前去面试,面试官来了一句,zabbix会搭建吗,会的话你在这搭建下,30分钟搭建出来就入职。不管

    2022年10月22日
  • H5页面架设教程_服务器架设教程

    H5页面架设教程_服务器架设教程H5页面架设教程

  • linux系统chmod 755权限

    linux系统chmod 755权限最近学习Lua,写脚本./执行遇到-bash:./helloworld.lua:Permissiondenied提示,意思是没有可执行权限;通过查看使用:sudochmod755helloworld.lua给脚本添加可执行权限正常执行;ll查看文件发现-rwxr-xr-x1rootroot65Oct2119:13helloworld.lua多了读写可执行权限;下面对这些…

  • 快速排序quicksort_快速排序的原理

    快速排序quicksort_快速排序的原理一、简介快速排序是(Quicksort)是对冒泡排序的一种改进,是非常重要且应用比较广泛的一种高效率排序算法。二、算法思路快速排序是通过多次比较和交换来实现排序,在一趟排序中把将要排序的数据分成两个独立的部分,对这两部分进行排序使得其中一部分所有数据比另一部分都要小,然后继续递归排序这两部分,最终实现所有数据有序。大致步骤如下:首先设置一个分界值也就是基准值又是也称为监视哨,通过该分界值将数据分割成两部分。将大于或等于分界值的数据集中到右边,小于分界值的数据集中到左边。一趟排序过后,左边部

  • js事件防止冒泡

    js事件防止冒泡

  • 跨平台应用框架_安卓前端框架

    跨平台应用框架_安卓前端框架转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。原文出处:https://dzone.com/articles/cross-platform-mobile-

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号