Python——因子分析(KMO检验和Bartlett’s球形检验)「建议收藏」

Python——因子分析(KMO检验和Bartlett’s球形检验)「建议收藏」因子分析用Python做的一个典型例子一、实验目的采用合适的数据分析方法对下面的题进行解答二、实验要求采用因子分析方法,根据48位应聘者的15项指标得分,选出6名最优秀的应聘者。三、代码importpandasaspdimportnumpyasnpimportmathasmathimportnumpyasnpfromnumpyimpor…

大家好,又见面了,我是你们的朋友全栈君。

因子分析用Python做的一个典型例子

一、实验目的

采用合适的数据分析方法对下面的题进行解答

Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

二、实验要求

采用因子分析方法,根据48位应聘者的15项指标得分,选出6名最优秀的应聘者。

三、代码

import pandas as pd
import numpy as np
import math as math
import numpy as np
from numpy import *
from scipy.stats import bartlett
from factor_analyzer import *
import numpy.linalg as nlg
from sklearn.cluster import KMeans
from matplotlib import cm
import matplotlib.pyplot as plt
def main():
    df=pd.read_csv("./data/applicant.csv")
    # print(df)
    df2=df.copy()
    print("\n原始数据:\n",df2)
    del df2['ID']
    # print(df2)

    # 皮尔森相关系数
    df2_corr=df2.corr()
    print("\n相关系数:\n",df2_corr)

    #热力图
    cmap = cm.Blues
    # cmap = cm.hot_r
    fig=plt.figure()
    ax=fig.add_subplot(111)
    map = ax.imshow(df2_corr, interpolation='nearest', cmap=cmap, vmin=0, vmax=1)
    plt.title('correlation coefficient--headmap')
    ax.set_yticks(range(len(df2_corr.columns)))
    ax.set_yticklabels(df2_corr.columns)
    ax.set_xticks(range(len(df2_corr)))
    ax.set_xticklabels(df2_corr.columns)
    plt.colorbar(map)
    plt.show()

    # KMO测度
    def kmo(dataset_corr):
        corr_inv = np.linalg.inv(dataset_corr)
        nrow_inv_corr, ncol_inv_corr = dataset_corr.shape
        A = np.ones((nrow_inv_corr, ncol_inv_corr))
        for i in range(0, nrow_inv_corr, 1):
            for j in range(i, ncol_inv_corr, 1):
                A[i, j] = -(corr_inv[i, j]) / (math.sqrt(corr_inv[i, i] * corr_inv[j, j]))
                A[j, i] = A[i, j]
        dataset_corr = np.asarray(dataset_corr)
        kmo_num = np.sum(np.square(dataset_corr)) - np.sum(np.square(np.diagonal(A)))
        kmo_denom = kmo_num + np.sum(np.square(A)) - np.sum(np.square(np.diagonal(A)))
        kmo_value = kmo_num / kmo_denom
        return kmo_value

    print("\nKMO测度:", kmo(df2_corr))

    # 巴特利特球形检验
    df2_corr1 = df2_corr.values
    print("\n巴特利特球形检验:", bartlett(df2_corr1[0], df2_corr1[1], df2_corr1[2], df2_corr1[3], df2_corr1[4],
                                  df2_corr1[5], df2_corr1[6], df2_corr1[7], df2_corr1[8], df2_corr1[9],
                                  df2_corr1[10], df2_corr1[11], df2_corr1[12], df2_corr1[13], df2_corr1[14]))

    # 求特征值和特征向量
    eig_value, eigvector = nlg.eig(df2_corr)  # 求矩阵R的全部特征值,构成向量
    eig = pd.DataFrame()
    eig['names'] = df2_corr.columns
    eig['eig_value'] = eig_value
    eig.sort_values('eig_value', ascending=False, inplace=True)
    print("\n特征值\n:",eig)
    eig1=pd.DataFrame(eigvector)
    eig1.columns = df2_corr.columns
    eig1.index = df2_corr.columns
    print("\n特征向量\n",eig1)

    # 求公因子个数m,使用前m个特征值的比重大于85%的标准,选出了公共因子是五个
    for m in range(1, 15):
        if eig['eig_value'][:m].sum() / eig['eig_value'].sum() >= 0.85:
            print("\n公因子个数:", m)
            break

    # 因子载荷阵
    A = np.mat(np.zeros((15, 5)))
    i = 0
    j = 0
    while i < 5:
        j = 0
        while j < 15:
            A[j:, i] = sqrt(eig_value[i]) * eigvector[j, i]
            j = j + 1
        i = i + 1
    a = pd.DataFrame(A)
    a.columns = ['factor1', 'factor2', 'factor3', 'factor4', 'factor5']
    a.index = df2_corr.columns
    print("\n因子载荷阵\n", a)
    fa = FactorAnalyzer(n_factors=5)
    fa.loadings_ = a
    # print(fa.loadings_)
    print("\n特殊因子方差:\n", fa.get_communalities())  # 特殊因子方差,因子的方差贡献度 ,反映公共因子对变量的贡献
    var = fa.get_factor_variance()  # 给出贡献率
    print("\n解释的总方差(即贡献率):\n", var)

    # 因子旋转
    rotator = Rotator()
    b = pd.DataFrame(rotator.fit_transform(fa.loadings_))
    b.columns = ['factor1', 'factor2', 'factor3', 'factor4', 'factor5']
    b.index = df2_corr.columns
    print("\n因子旋转:\n", b)

    # 因子得分
    X1 = np.mat(df2_corr)
    X1 = nlg.inv(X1)
    b = np.mat(b)
    factor_score = np.dot(X1, b)
    factor_score = pd.DataFrame(factor_score)
    factor_score.columns = ['factor1', 'factor2', 'factor3', 'factor4', 'factor5']
    factor_score.index = df2_corr.columns
    print("\n因子得分:\n", factor_score)
    fa_t_score = np.dot(np.mat(df2), np.mat(factor_score))
    print("\n应试者的五个因子得分:\n",pd.DataFrame(fa_t_score))

    # 综合得分
    wei = [[0.50092], [0.137087], [0.097055], [0.079860], [0.049277]]
    fa_t_score = np.dot(fa_t_score, wei) / 0.864198
    fa_t_score = pd.DataFrame(fa_t_score)
    fa_t_score.columns = ['综合得分']
    fa_t_score.insert(0, 'ID', range(1, 49))
    print("\n综合得分:\n", fa_t_score)
    print("\n综合得分:\n", fa_t_score.sort_values(by='综合得分', ascending=False).head(6))

    plt.figure()
    ax1=plt.subplot(111)
    X=fa_t_score['ID']
    Y=fa_t_score['综合得分']
    plt.bar(X,Y,color="#87CEFA")
    # plt.bar(X, Y, color="red")
    plt.title('result00')
    ax1.set_xticks(range(len(fa_t_score)))
    ax1.set_xticklabels(fa_t_score.index)
    plt.show()

    fa_t_score1=pd.DataFrame()
    fa_t_score1=fa_t_score.sort_values(by='综合得分',ascending=False).head()
    ax2 = plt.subplot(111)
    X1 = fa_t_score1['ID']
    Y1 = fa_t_score1['综合得分']
    plt.bar(X1, Y1, color="#87CEFA")
    # plt.bar(X1, Y1, color='red')
    plt.title('result01')
    plt.show()

if __name__ == '__main__':
    main()

 

 

四、实验步骤

(1)引入数据,数据标准化

因为数据是面试中的得分,量纲相同,并且数据的分布无异常值,所以数据可以不进行标准化。

Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

(2)建立相关系数矩阵

计算皮尔森相关系数,从热图中可以明显看出变量间存在的相关性。

 Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

进行相关系数矩阵检验——KMO测度和巴特利特球体检验:

KMO值:0.9以上非常好;0.8以上好;0.7一般;0.6差;0.5很差;0.5以下不能接受;巴特利球形检验的值范围在0-1,越接近1,使用因子分析效果越好。

Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

通过观察上面的计算结果,可以知道,KMO值为0.783775605643526,在较好的范围内,并且巴特利球形检验的值接近1,所有可以使用因子分析。

(3)求解特征值及相应特征向量 

 Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

求公因子个数m,使用前m个特征值的比重大于85%的标准,选出了公共因子是五个。

(4)因子载荷阵

  Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

由上可以看出,选择5个公共因子,从方差贡献率可以看出,其中第一个公因子解释了总体方差的50.092%,四个公共因子的方差贡献率为86.42%,可以较好的解释总体方差。

(5)因子旋转

 Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

(6)因子得分

 Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

(7)根据应聘者的五个因子得分,按照贡献率进行加权,得到最终各应试者的综合得分,然后选出前六个得分最高的应聘者。

 Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

Python——因子分析(KMO检验和Bartlett's球形检验)「建议收藏」

所以我们用因子分析产生的前六名分别是:40,39,22,2,10,23

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/149230.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • java总结体会_Java课程总结心得体会

    java总结体会_Java课程总结心得体会不知不觉中以学习Java将近4个月了,在这几个月的学习中我从一开始的迷茫懵逼,到现在的懵逼迷茫中,写下了这篇这个学期课程的Java学习心得体会。首先,我认为作为一个该开始学习Java的小白,在开始学习之前无论你有多大的热情与信心,都会在之后的学习中被程序啪啪打脸,让你无限的迷茫与懵逼。于是呢在学习中我们要学会”不抛弃,不放弃“,只要能坚定的去做你会发现,你的努力或给你带来回报,虽然很多时候你努力…

  • model.addattribute()的作用___attribute__()

    model.addattribute()的作用___attribute__()在前台用JS写的脚本方法,除了可以直接用在前台控件的属性中,还可以在后台运用。即在后台页面加载时,调用JS方法。语法格式有两种,如下:1.第一种写法:控件ID名.Attributes.Add(“事件名称”,“JS方法”);如:一个按钮控件Button1.Attributes.Add(“onclick”,“returnconfirm(‘确认?’)”);2.另一写法…

  • 通过openSSL生成证书「建议收藏」

    通过openSSL生成证书「建议收藏」通过openSSL命令生成证书

  • SecondCopy 2000 简单说明

    SecondCopy 2000 简单说明

  • js全局变量在其他方法中赋值后无法影响到该方法外的全局变量的值(奇葩问题)

    js全局变量在其他方法中赋值后无法影响到该方法外的全局变量的值(奇葩问题)做个笔记,以防忘记遇到一个奇葩问题(书写规范不会遇到此问题)问题描述:$(document).ready(function(){varstrCookie=document.cookie;username=”1″;if(strCookie){cookieVariables=strCookie.split(“;”);

  • C++和Java怎么选择,哪个更好找工作?「建议收藏」

    C++和Java怎么选择,哪个更好找工作?「建议收藏」Java和C++各有各的优势,至于选择什么方向要看你的兴趣爱好,只要你基础扎实我相信找工作都不难,而且语言都是相通的。从两者语言入门来说:Java入门相对简单,C++入门相对难,精通更难!从学习侧重来说:Java侧重于企业级应用开发,C++则注重底层应用开发。从就业来说:C++前期工资要高,工作机会少。Java招聘多,工作机会多。从前景来说:Java、C++长期在编程排行榜前几位,所以学习哪个都可以。从未来来说:无论你学习Java还是学习C++,只要有多年的经验,工资都会高,不过在工作期

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号