Promise用法详解(一)

Promise用法详解(一)Promise基本概念Promise是一个构造函数,所以可以new出一个Promise的实例在Promise上有两个函数resolve(成功之后的回调函数)和reject(失败后的回调函数)在Promise构造函数的prototype属性上,有一个.then()方法。所以只要是Promise构造函数创建的实例,都可以访问到.then()方法Promise表示一个一…

大家好,又见面了,我是你们的朋友全栈君。

Promise

基本概念
  1. Promise是一个构造函数,所以可以 new 出一个Promise的实例
  2. 在Promise上有两个函数 resolve(成功之后的回调函数)和 reject(失败后的回调函数)
  3. 在Promise构造函数的prototype属性上,有一个 .then() 方法。所以只要是Promise构造函数创建的实例,都可以访问到 .then()方法
  4. Promise表示一个一步操作,每当我们new一个Promise的实例,这个实例就代表具体的异步操作。
  5. Promise创建的实例,是一个异步操作,这个异步操作结果,只有两种结果
  • 状态1:异步执行成功,需要在内部调用成功的回调函数resolve把结果返回给调用者
  • 状态2:异步执行失败,需要在内部调用失败的回调函数reject把结果返回调用者
  • 由于Promise的实例是一个异步操作,所以内部拿到操作结果后,无法使用return把操作结果返回给调用者,这个时候只能使用回调函数的形式,把成功或失败的结果,返回给调用者
  1. 我们可以在new出来的Promise实例上,调用 .then()方法,预先为这个Promise异步操作,指定成功(resolve)和失败(reject)回调函数
形式上和具体的Promise异步操作的区别
let parmise = new Promise()

注意:上面new出来promise,只代表形式上的一个异步操作。就是说,我们只知道他是一个 异步操作,但做什么具体异步事情目前还不清楚。

let promise = new Promise(function() {
    // 这个function内部写的就是具体的异步操作
}

上面则是一个具体的异步操作,其中使用function制定一个具体的异步操作

Promise的执行时机
  • 每当new一个Promise实例的时候,除了会得到一个promise实例之外,还会立即调用我们为Promise构造函数传递的那个function,执行function中的异步代码
  • 所以在使用Promise时我们可以用函数进行包裹,使其按需执行

通过 .then()指定回调函数的时候,成功的回调函数必须传,失败的回调可以省略

有了前面的这些铺垫我们来体验一下Primise的魅力

需求 此时我们有一个简单的需求,需要去依次去读取一些文件的内容。在没有学习Promise之前我们可能这样

const fs = require('fs')
// 形参依次代表,读取路径,成功回调,失败回调
function getFileByPath(fpath, succCb, errCb) {
    fs.readFile(fpath, 'utf-8', (err, dataStr) => {
        if (err) return errCb(err)
        succCb(dataStr)
    })
}

// 依次读取
getFileByPath('./1.txt', function (data) {
    console.log(data)
    getFileByPath('./2.txt', function (data) {
        console.log(data)
        getFileByPath('./3.txt', function (data) {
            console.log(data)           
        })
    })
})

这个时候就出现了一个问题: 回调地狱
这时你想起来Pramise不就是为了来解决回调地狱的嘛,于是。

const fs = require('fs')
function getFileByPath(fpath) {
    return new Promise(function (resolve, reject) {
        fs.readFile(fpath, 'utf-8', (err, dataStr) => {
            if (err) return reject(err)
            resolve(dataStr)
       })
   })
}

// 依次读取
// 再上一个 .then中,返回一个promise实例,可以继续使用下一个 .then来处理
getFileByPath('./1.txt')
    .then(function (data) {
     console.log(data)
     return getFileByPath ('./2.txt')
 })
.then(function (data) {
    console.log(data)
    return getFileByPath('./3.txt')
})
    .then(function (data) {
    console.log(data)
})
 

也成功完成需求这里写图片描述

Promise中异常捕获两种方式的使用场景

需求 :前面的Promise执行失败,但是不要影响后续promise正常执行。

  • 此时可以单独为每个promise通过.then()指定一下失败的回调
const fs = require('fs')
function getFileByPath(fpath) {
    return new Promise(function (resolve, reject) {
        fs.readFile(fpath, 'utf-8', (err, dataStr) => {
            if (err) return reject(err)
            resolve(dataStr)
       })
   })
}

// 依次读取
// 注意此处我们写了一个根本不存在文件路径
getFileByPath('./11111111.txt')
    .then(function (data) {
     console.log(data)
     return getFileByPath ('./2.txt')
    }, function (err) {
        console.log('这是失败的结果:' + err.message)
        // return一个新的 Promise
        return getFileByPath('./2.txt')
 })
.then(function (data) {
    console.log(data)
    return getFileByPath('./3.txt')
})
    .then(function (data) {
    console.log(data)
})

结果如图这里写图片描述
需求:前面的Promise执行失败,后面Promise依赖于前面Promise执行结果,如果前面失败了后面也没有继续执行下去的意义了。

  • 此时可以使用 .catch()进行异常捕获,只要前面Promise有任何一个执行失败,立即终止所有的Promise的执行,并马上进入catch中去处理Promise中抛出的异常。
const fs = require('fs')
function getFileByPath(fpath) {
    return new Promise(function (resolve, reject) {
        fs.readFile(fpath, 'utf-8', (err, dataStr) => {
            if (err) return reject(err)
            resolve(dataStr)
       })
   })
}

// 依次读取
getFileByPath('./1.txt')
    .then(function (data) {
        console.log(data)
        // 注意此处我们写了一个根本不存在文件路径
     return getFileByPath ('./22222.txt')
    })
    .then(function (data) {
    console.log(data)
    return getFileByPath('./3.txt')
})
   .then(function (data) {
    console.log(data)
})
// catch的作用: 如果前面有任何Promise执行失败,则立即终止所有Pormise执行,并进入Promise中去处理Promise抛出的异常     
    .catch(function (err) {
    console.log("catch来捕获:" + err.message)
})

结果如图这里写图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/149071.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • linux修改密码长度限制_linux文件名长度限制修改

    linux修改密码长度限制_linux文件名长度限制修改修改密码长度:设置为不少于8位的。修改最短密码长度需要编辑login.defs文件(vi/etc/login.defs),把下面这行PASS_MIN_LEN5(默认的情况)改为PASS_MIN_LEN8(修改后的情况)login.defs文件是login程序的配置文件 转载于:https://blog.51ct…

  • 玻尔兹曼公式推导碰撞项_玻尔兹曼方程表达式

    玻尔兹曼公式推导碰撞项_玻尔兹曼方程表达式在做别的事之前,让我们试做一个假想的研究。假定我们有一个很好的能跟踪单个运动粒子而不产生任何其他效应的激光探测器,把这个探测器应用在一个波尔兹曼气体上,可以很容易发现,无论粒子间碰撞能否忽略,牛顿轨道方程始终是有意义的(如果需要考虑碰撞,沿牛顿轨道的粒子存活几率是应该引进的)。问题就这样产生了:因为波尔兹曼方程和给定的初值边值条件已经构成了一个完全集合,我们是否应该简单的无视牛顿方程?如果牛顿方程…

  • poj3468 A Simple Problem with Integers(线段树模板 功能:区间增减,区间求和)[通俗易懂]

    poj3468 A Simple Problem with Integers(线段树模板 功能:区间增减,区间求和)

  • BZOJ2440(全然平方数)二分+莫比乌斯容斥

    BZOJ2440(全然平方数)二分+莫比乌斯容斥

  • Oracle 创建表空间

    Oracle 创建表空间–删除表空间droptablespacenacosincludingcontentsanddatafiles—-创建表空间并定义路径createtablespacenacos–表空间名datafile’D:/app/Administrator/oradata/nacos/nacos.dbf’size500m–大小初始值autoextendon–自动扩展next50mmaxsize20480m–每次扩展50m,最大为20480mex…

  • 最好用的mysql 管理工具_汽车行业质量管理五大工具

    最好用的mysql 管理工具_汽车行业质量管理五大工具对于数据库运维人员来说,想要保证数据库在高效平稳的运行就有点像杂技演员在转盘子,需要灵活、专注、能快速做出反应、并且拥有冷静的头脑。数据库几乎是所有能够成功运行系统的核心。而数据库运维人员对组织的数据… 对于数据库运维人员来说,想要保证数据库在高效平稳的运行就有点像杂技演员在转盘子,需要灵活、专注、能快速做出反应、并且拥有冷静的头脑。数据库几乎是所有能够成功运行系统的核心。而数据库运维人员对组织的数据负责,能找到可依靠的工具来更加高效的管理数据库,并且轻松的维护日常的工作就变得格外重要。数据库运维人

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号