憨批的语义分割重制版6——Pytorch 搭建自己的Unet语义分割平台「建议收藏」

憨批的语义分割重制版6——Pytorch 搭建自己的Unet语义分割平台「建议收藏」憨批的语义分割13——Pytorch搭建自己的Unet语义分割平台注意事项学习前言什么是Unet模型代码下载Unet实现思路一、预测部分1、主干网络介绍2、加强特征提取结构3、利用特征获得预测结果二、训练部分1、训练文件详解2、LOSS解析训练自己的Unet模型注意事项这是重新构建了的Unet语义分割网络,主要是文件框架上的构建,还有代码的实现,和之前的语义分割网络相比,更加完整也更清晰一些。建议还是学习这个版本的Unet。学习前言还是快乐的pytorch人。什么是Unet模型Unet是一个

大家好,又见面了,我是你们的朋友全栈君。

注意事项

这是重新构建了的Unet语义分割网络,主要是文件框架上的构建,还有代码的实现,和之前的语义分割网络相比,更加完整也更清晰一些。建议还是学习这个版本的Unet。

学习前言

还是快乐的pytorch人。
在这里插入图片描述

什么是Unet模型

Unet是一个优秀的语义分割模型,其主要执行过程与其它语义分割模型类似。

Unet可以分为三个部分,如下图所示:

第一部分是主干特征提取部分,我们可以利用主干部分获得一个又一个的特征层,Unet的主干特征提取部分与VGG相似,为卷积和最大池化的堆叠。利用主干特征提取部分我们可以获得五个初步有效特征层,在第二步中,我们会利用这五个有效特征层可以进行特征融合。

第二部分是加强特征提取部分,我们可以利用主干部分获取到的五个初步有效特征层进行上采样,并且进行特征融合,获得一个最终的,融合了所有特征的有效特征层

第三部分是预测部分,我们会利用最终获得的最后一个有效特征层对每一个特征点进行分类,相当于对每一个像素点进行分类。
在这里插入图片描述

代码下载

Github源码下载地址为:
https://github.com/bubbliiiing/unet-pytorch

Unet实现思路

一、预测部分

1、主干网络介绍

在这里插入图片描述
Unet的主干特征提取部分由卷积+最大池化组成,整体结构与VGG类似。

本文所采用的主干特征提取网络为VGG16,这样也方便使用imagnet上的预训练权重。

VGG是由Simonyan 和Zisserman在文献《Very Deep Convolutional Networks for Large Scale Image Recognition》中提出卷积神经网络模型,其名称来源于作者所在的牛津大学视觉几何组(Visual Geometry Group)的缩写。

该模型参加2014年的 ImageNet图像分类与定位挑战赛,取得了优异成绩:在分类任务上排名第二,在定位任务上排名第一。
它的结构如下图所示:
在这里插入图片描述
这是一个VGG16被用到烂的图,但确实很好的反应了VGG16的结构。

当我们使用VGG16作为主干特征提取网络的时候,我们只会用到两种类型的层,分别是卷积层最大池化层

当输入的图像大小为512x512x3的时候,具体执行方式如下:
1、conv1:进行两次[3,3]的64通道的卷积,获得一个[512,512,64]的初步有效特征层,再进行2X2最大池化,获得一个[256,256,64]的特征层。
2、conv2:进行两次[3,3]的128通道的卷积,获得一个[256,256,128]的初步有效特征层,再进行2X2最大池化,获得一个[128,128,128]的特征层。
3、conv3:进行三次[3,3]的256通道的卷积,获得一个[128,128,256]的初步有效特征层,再进行2X2最大池化,获得一个[64,64,256]的特征层。
4、conv4:进行三次[3,3]的512通道的卷积,获得一个[64,64,512]的初步有效特征层,再进行2X2最大池化,获得一个[32,32,512]的特征层。
5、conv5:进行三次[3,3]的512通道的卷积,获得一个[32,32,512]的初步有效特征层。

在这里插入图片描述

import torch
import torch.nn as nn
from torchvision.models.utils import load_state_dict_from_url
class VGG(nn.Module):
def __init__(self, features, num_classes=1000):
super(VGG, self).__init__()
self.features = features
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def make_layers(cfg, batch_norm=False, in_channels = 3):
layers = []
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfgs = { 

'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']
}
def VGG16(pretrained, in_channels, **kwargs):
model = VGG(make_layers(cfgs["D"], batch_norm = False, in_channels = in_channels), **kwargs)
if pretrained:
state_dict = load_state_dict_from_url("https://download.pytorch.org/models/vgg16-397923af.pth", model_dir="./model_data")
model.load_state_dict(state_dict)
del model.avgpool
del model.classifier
return model

2、加强特征提取结构

在这里插入图片描述
Unet所使用的加强特征提取网络是一个U的形状。

利用第一步我们可以获得五个初步的有效特征层,在加强特征提取网络这里,我们会利用这五个初步的有效特征层进行特征融合特征融合的方式就是对特征层进行上采样并且进行堆叠

为了方便网络的构建与更好的通用性,我们的Unet和上图的Unet结构有些许不同,在上采样时直接进行两倍上采样再进行特征融合,最终获得的特征层和输入图片的高宽相同。

具体示意图如下:
在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
from nets.vgg import VGG16
class unetUp(nn.Module):
def __init__(self, in_size, out_size):
super(unetUp, self).__init__()
self.conv1 = nn.Conv2d(in_size, out_size, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(out_size, out_size, kernel_size=3, padding=1)
self.up = nn.UpsamplingBilinear2d(scale_factor=2)
def forward(self, inputs1, inputs2):
outputs = torch.cat([inputs1, self.up(inputs2)], 1)
outputs = self.conv1(outputs)
outputs = self.conv2(outputs)
return outputs
class Unet(nn.Module):
def __init__(self, num_classes=21, in_channels=3, pretrained=False):
super(Unet, self).__init__()
self.vgg = VGG16(pretrained=pretrained,in_channels=in_channels)
in_filters = [192, 384, 768, 1024]
out_filters = [64, 128, 256, 512]
# upsampling
self.up_concat4 = unetUp(in_filters[3], out_filters[3])
self.up_concat3 = unetUp(in_filters[2], out_filters[2])
self.up_concat2 = unetUp(in_filters[1], out_filters[1])
self.up_concat1 = unetUp(in_filters[0], out_filters[0])
# final conv (without any concat)
self.final = nn.Conv2d(out_filters[0], num_classes, 1)
def forward(self, inputs):
feat1 = self.vgg.features[  :4 ](inputs)
feat2 = self.vgg.features[4 :9 ](feat1)
feat3 = self.vgg.features[9 :16](feat2)
feat4 = self.vgg.features[16:23](feat3)
feat5 = self.vgg.features[23:-1](feat4)
up4 = self.up_concat4(feat4, feat5)
up3 = self.up_concat3(feat3, up4)
up2 = self.up_concat2(feat2, up3)
up1 = self.up_concat1(feat1, up2)
final = self.final(up1)
return final
def _initialize_weights(self, *stages):
for modules in stages:
for module in modules.modules():
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.BatchNorm2d):
module.weight.data.fill_(1)
module.bias.data.zero_()

3、利用特征获得预测结果

利用1、2步,我们可以获取输入进来的图片的特征,此时,我们需要利用特征获得预测结果。

利用特征获得预测结果的过程为:
利用一个1×1卷积进行通道调整,将最终特征层的通道数调整成num_classes。
在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
from nets.vgg import VGG16
class unetUp(nn.Module):
def __init__(self, in_size, out_size):
super(unetUp, self).__init__()
self.conv1 = nn.Conv2d(in_size, out_size, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(out_size, out_size, kernel_size=3, padding=1)
self.up = nn.UpsamplingBilinear2d(scale_factor=2)
def forward(self, inputs1, inputs2):
outputs = torch.cat([inputs1, self.up(inputs2)], 1)
outputs = self.conv1(outputs)
outputs = self.conv2(outputs)
return outputs
class Unet(nn.Module):
def __init__(self, num_classes=21, in_channels=3, pretrained=False):
super(Unet, self).__init__()
self.vgg = VGG16(pretrained=pretrained,in_channels=in_channels)
in_filters = [192, 384, 768, 1024]
out_filters = [64, 128, 256, 512]
# upsampling
self.up_concat4 = unetUp(in_filters[3], out_filters[3])
self.up_concat3 = unetUp(in_filters[2], out_filters[2])
self.up_concat2 = unetUp(in_filters[1], out_filters[1])
self.up_concat1 = unetUp(in_filters[0], out_filters[0])
# final conv (without any concat)
self.final = nn.Conv2d(out_filters[0], num_classes, 1)
def forward(self, inputs):
feat1 = self.vgg.features[  :4 ](inputs)
feat2 = self.vgg.features[4 :9 ](feat1)
feat3 = self.vgg.features[9 :16](feat2)
feat4 = self.vgg.features[16:23](feat3)
feat5 = self.vgg.features[23:-1](feat4)
up4 = self.up_concat4(feat4, feat5)
up3 = self.up_concat3(feat3, up4)
up2 = self.up_concat2(feat2, up3)
up1 = self.up_concat1(feat1, up2)
final = self.final(up1)
return final
def _initialize_weights(self, *stages):
for modules in stages:
for module in modules.modules():
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.BatchNorm2d):
module.weight.data.fill_(1)
module.bias.data.zero_()

二、训练部分

1、训练文件详解

我们使用的训练文件采用VOC的格式。
语义分割模型训练的文件分为两部分。
第一部分是原图,像这样:
在这里插入图片描述
第二部分标签,像这样:
在这里插入图片描述
原图就是普通的RGB图像,标签就是灰度图或者8位彩色图。

原图的shape为[height, width, 3],标签的shape就是[height, width],对于标签而言,每个像素点的内容是一个数字,比如0、1、2、3、4、5……,代表这个像素点所属的类别。

语义分割的工作就是对原始的图片的每一个像素点进行分类,所以通过预测结果中每个像素点属于每个类别的概率与标签对比,可以对网络进行训练。

2、LOSS解析

本文所使用的LOSS由两部分组成:
1、Cross Entropy Loss。
2、Dice Loss。

Cross Entropy Loss就是普通的交叉熵损失,当语义分割平台利用Softmax对像素点进行分类的时候,进行使用。

Dice loss将语义分割的评价指标作为Loss,Dice系数是一种集合相似度度量函数,通常用于计算两个样本的相似度,取值范围在[0,1]。

计算公式如下:
在这里插入图片描述
就是预测结果和真实结果的交乘上2,除上预测结果加上真实结果。其值在0-1之间。越大表示预测结果和真实结果重合度越大。所以Dice系数是越大越好。

如果作为LOSS的话是越小越好,所以使得Dice loss = 1 – Dice,就可以将Loss作为语义分割的损失了。
实现代码如下:

import torch
import torch.nn.functional as F  
import numpy as np
from torch import nn
from torch.autograd import Variable
from random import shuffle
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from PIL import Image
import cv2
def CE_Loss(inputs, target, num_classes=21):
n, c, h, w = inputs.size()
nt, ht, wt = target.size()
if h != ht and w != wt:
inputs = F.interpolate(inputs, size=(ht, wt), mode="bilinear", align_corners=True)
temp_inputs = inputs.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c)
temp_target = target.view(-1)
CE_loss  = nn.NLLLoss(ignore_index=num_classes)(F.log_softmax(temp_inputs, dim = -1), temp_target)
return CE_loss
def Dice_loss(inputs, target, beta=1, smooth = 1e-5):
n, c, h, w = inputs.size()
nt, ht, wt, ct = target.size()
if h != ht and w != wt:
inputs = F.interpolate(inputs, size=(ht, wt), mode="bilinear", align_corners=True)
temp_inputs = torch.softmax(inputs.transpose(1, 2).transpose(2, 3).contiguous().view(n, -1, c),-1)
temp_target = target.view(n, -1, ct)
#--------------------------------------------#
# 计算dice loss
#--------------------------------------------#
tp = torch.sum(temp_target[...,:-1] * temp_inputs, axis=[0,1])
fp = torch.sum(temp_inputs                       , axis=[0,1]) - tp
fn = torch.sum(temp_target[...,:-1]              , axis=[0,1]) - tp
score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
dice_loss = 1 - torch.mean(score)
return dice_loss

训练自己的Unet模型

首先前往Github下载对应的仓库,下载完后利用解压软件解压,之后用编程软件打开文件夹。
注意打开的根目录必须正确,否则相对目录不正确的情况下,代码将无法运行。

一定要注意打开后的根目录是文件存放的目录。
在这里插入图片描述

一、数据集的准备

本文使用VOC格式进行训练,训练前需要自己制作好数据集,如果没有自己的数据集,可以通过Github连接下载VOC12+07的数据集尝试下。
训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的SegmentationClass中。

在这里插入图片描述

二、数据集的处理

在完成数据集的摆放之后,我们需要对数据集进行下一步的处理,目的是获得训练用的train.txt以及val.txt,需要用到根目录下的voc_annotation.py。

如果下载的是我上传的voc数据集,那么就不需要运行根目录下的voc_annotation.py。
如果是自己制作的数据集,那么需要运行根目录下的voc_annotation.py,从而生成train.txt和val.txt。
在这里插入图片描述

三、开始网络训练

通过voc_annotation.py我们已经生成了train.txt以及val.txt,此时我们可以开始训练了。训练的参数较多,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的num_classes。

num_classes用于指向检测类别的个数+1!训练自己的数据集必须要修改!

在这里插入图片描述
之后就可以开始训练了。

四、训练结果预测

训练结果预测需要用到两个文件,分别是unet.py和predict.py。
我们首先需要去unet.py里面修改model_path以及num_classes,这两个参数必须要修改。

model_path指向训练好的权值文件,在logs文件夹里。
num_classes指向检测类别的个数+1。

在这里插入图片描述
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/147893.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • vue 解决跨域问题(开发环境)[通俗易懂]

    vue 解决跨域问题(开发环境)[通俗易懂]一、什么是跨域问题同源:域名,协议,端口均相同不同源就是跨域,比如你的前端为localhost:9528,后端为localhost:8080,此时前端去访问后端接口就会产生跨域问题,因为端口不同。这里不详细讲,可参考百度百科-同源策略。二、如何解决跨域问题前后端都可以解决,这里仅提供vue的前端跨域解决方案:前端vue.config.js配置如下,然后保证在你访问后端接口时加个前缀/api。devServer:{port:port,open:false,ov

  • 三大通信协议(二):IIC通信协议

    三大通信协议(二):IIC通信协议1.概念是什么?I²C(Inter-IntegratedCircuit),中文应该叫集成电路总线,它是一种串行通信总线,使用多主从架构,是由飞利浦公司在1980年代初设计的,方便了主板、嵌入式系统或手机与周边设备组件之间的通讯。由于其简单性,它被广泛用于微控制器与传感器阵列,显示器,IoT设备,EEPROM等之间的通信。优点仅需要两条总线即可通讯(大大的节约了IO口资源)最大主机数量:无限制。最大从机限制:理论127(一个主机多个从机,一对多,多对一,多对多)2.硬件连

  • 脚手架专项施工方案范本_脚手架工程施工方案主要内容

    脚手架专项施工方案范本_脚手架工程施工方案主要内容前言如何快速搭建一个httprunner项目呢?我们可以使用脚手架,脚手架就是自动地创建一些目录,形成一个项目的架构,不需要我们再手动的去创建查看创建新项目的命令先来查看一下帮助命令httpr

  • 计算机硬件知识总结

    计算机硬件知识总结计算机硬件对于软件工程师来说很多时候只是停留在一个概念上,例如CPU和内存,硬盘等等,这些都属于计算机组成原理里面必然会介绍到的,博主大学前期接触过大量的计算机硬件知识,曾几何时我甚至考虑过全身心投入到半导体行业,但是考虑到环境限制因素和个人职业的发展,折中选择了软件方向,但是最近阅读了一些机器学习相关的文章,也尝试过自己去训练模型,发现模型训练对硬件的要求比较特殊,这也让我有机会来从新总结一下硬…

  • 蓝桥杯集锦04(python3)

    蓝桥杯集锦04(python3)

  • git merge用法详解_git merge用法

    git merge用法详解_git merge用法一、开发分支(dev)上的代码达到上线的标准后,要合并到master分支gitcheckoutdevgitpullgitcheckoutmastergitmergedevgitpush-uoriginmaster二、当master代码改动了,需要更新开发分支(dev)上的代码gitcheckoutmastergitpullgitch…

    2022年10月25日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号