Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略

Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略目录dlib库的简介dlib库的安装dlib库的使用函数0、利用dlib.get_frontal_face_detector函数实现人脸检测可视化1、hog提取特征的函数2、CNN提取特征的函数dlib库的简介一个机器学习的开源库,包含了机器学习的很多算…

大家好,又见面了,我是你们的朋友全栈君。

Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略

目录

dlib库的简介

dlib库的安装

dlib库的使用函数

0、利用dlib.get_frontal_face_detector函数实现人脸检测可视化

1、hog提取特征的函数

2、CNN提取特征的函数


dlib库的简介

    一个机器学习的开源库,包含了机器学习的很多算法,使用起来很方便,直接包含头文件即可,并且不依赖于其他库(自带图像编解码库源码)。Dlib可以帮助您创建很多复杂的机器学习方面的软件来帮助解决实际问题。目前Dlib已经被广泛的用在行业和学术领域,包括机器人,嵌入式设备,移动电话和大型高性能计算环境。

Dlib是一个使用现代C++技术编写的跨平台的通用库,遵守Boost Software licence. 主要特点如下: 

  • 完善的文档:每个类每个函数都有详细的文档,并且提供了大量的示例代码,如果你发现文档描述不清晰或者没有文档,告诉作者,作者会立刻添加。 
  • 可移植代码:代码符合ISO C++标准,不需要第三方库支持,支持win32、Linux、Mac OS X、Solaris、HPUX、BSDs 和 POSIX 系统 
  • 线程支持:提供简单的可移植的线程API 
  • 网络支持:提供简单的可移植的Socket API和一个简单的Http服务器 
  • 图形用户界面:提供线程安全的GUI API 
  • 数值算法:矩阵、大整数、随机数运算等 
  • 机器学习算法:
  • 图形模型算法: 
  • 图像处理:支持读写Windows BMP文件,不同类型色彩转换 
  • 数据压缩和完整性算法:CRC32、Md5、不同形式的PPM算法 
  • 测试:线程安全的日志类和模块化的单元测试框架以及各种测试assert支持
  • 一般工具:XML解析、内存管理、类型安全的big/little endian转换、序列化支持和容器类
     

Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略

dlib pypi
dlib库
dlib c++ library

dlib库的安装

dlib压缩包集合Index of /files

本博客提供三种方法进行安装

T1方法:pip install dlib

此方法是需要在你安装cmake、Boost环境的计算机使用

T2方法:conda install -c menpo dlib=18.18

此方法适合那些已经安装好conda库的环境的计算机使用,conda库的安装本博客有详细攻略,请自行翻看。

T3方法:pip install dlib-19.8.1-cp36-cp36m-win_amd64.whl

dlib库的whl文件——dlib-19.7.0-cp36-cp36m-win_amd64.rar

dlib-19.3.1-cp35-cp35m-win_amd64.whl

Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略

Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略

Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略

哈哈,大功告成!如有资料或问题需求,请留言!

dlib库的使用函数

0、利用dlib.get_frontal_face_detector函数实现人脸检测可视化

CV之dlib:利用dlib.get_frontal_face_detector函数实现人脸检测

Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略Py之dlib:Python库之dlib库的简介、安装、使用方法详细攻略

1、hog提取特征的函数

dlib.get_frontal_face_detector()    #人脸特征提取器,该函数是在C++里面定义的

help(dlib.get_frontal_face_detector())
Help on fhog_object_detector in module dlib.dlib object:

class fhog_object_detector(Boost.Python.instance)
 |  This object represents a sliding window histogram-of-oriented-gradients based object detector.
 |
 |  Method resolution order:
 |      fhog_object_detector
 |      Boost.Python.instance
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  __call__(...)
 |      __call__( (fhog_object_detector)arg1, (object)image [, (int)upsample_num_times=0]) -> rectangles :
 |          requires
 |              - image is a numpy ndarray containing either an 8bit grayscale or RGB
 |                image.
 |              - upsample_num_times >= 0
 |          ensures
 |              - This function runs the object detector on the input image and returns
 |                a list of detections.
 |              - Upsamples the image upsample_num_times before running the basic
 |                detector.
 |
 |  __getstate__(...)
 |      __getstate__( (fhog_object_detector)arg1) -> tuple
 |
 |  __init__(...)
 |      __init__( (object)arg1) -> None
 |
 |      __init__( (object)arg1, (str)arg2) -> object :
 |          Loads an object detector from a file that contains the output of the
 |          train_simple_object_detector() routine or a serialized C++ object of type
 |          object_detector<scan_fhog_pyramid<pyramid_down<6>>>.
 |
 |  __reduce__ = <unnamed Boost.Python function>(...)
 |
 |  __setstate__(...)
 |      __setstate__( (fhog_object_detector)arg1, (tuple)arg2) -> None
 |
 |  run(...)
 |      run( (fhog_object_detector)arg1, (object)image [, (int)upsample_num_times=0 [, (float)adjust_threshold=0.0]]) -> tuple :
 |          requires
 |              - image is a numpy ndarray containing either an 8bit grayscale or RGB
 |                image.
 |              - upsample_num_times >= 0
 |          ensures
 |              - This function runs the object detector on the input image and returns
 |                a tuple of (list of detections, list of scores, list of weight_indices).
 |              - Upsamples the image upsample_num_times before running the basic
 |                detector.
 |
 |  save(...)
 |      save( (fhog_object_detector)arg1, (str)detector_output_filename) -> None :
 |          Save a simple_object_detector to the provided path.
 |
 |  ----------------------------------------------------------------------
 |  Static methods defined here:
 |
 |  run_multiple(...)
 |      run_multiple( (list)detectors, (object)image [, (int)upsample_num_times=0 [, (float)adjust_threshold=0.0]]) -> tuple :
 |          requires
 |              - detectors is a list of detectors.
 |              - image is a numpy ndarray containing either an 8bit grayscale or RGB
 |                image.
 |              - upsample_num_times >= 0
 |          ensures
 |              - This function runs the list of object detectors at once on the input image and returns
 |                a tuple of (list of detections, list of scores, list of weight_indices).
 |              - Upsamples the image upsample_num_times before running the basic
 |                detector.
 |
 |  ----------------------------------------------------------------------
 |  Data and other attributes defined here:
 |
 |  __instance_size__ = 160
 |
 |  __safe_for_unpickling__ = True
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from Boost.Python.instance:
 |
 |  __new__(*args, **kwargs) from Boost.Python.class
 |      Create and return a new object.  See help(type) for accurate signature.
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from Boost.Python.instance:
 |
 |  __dict__
 |
 |  __weakref__

2、CNN提取特征的函数

cnn_face_detector = dlib.cnn_face_detection_model_v1(cnn_face_detection_model)

help(dlib.cnn_face_detection_model_v1)
Help on class cnn_face_detection_model_v1 in module dlib.dlib:

class cnn_face_detection_model_v1(Boost.Python.instance)
 |  This object detects human faces in an image.  The constructor loads the face detection model from a file. You can download a pre-trained model from http://dlib.net/files/mmod_human_face_detector.dat.bz2.
 |
 |  Method resolution order:
 |      cnn_face_detection_model_v1
 |      Boost.Python.instance
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  __call__(...)
 |      __call__( (cnn_face_detection_model_v1)arg1, (object)img [, (int)upsample_num_times=0]) -> mmod_rectangles :
 |          Find faces in an image using a deep learning model.
 |                    - Upsamples the image upsample_num_times before running the face
 |                      detector.
 |
 |      __call__( (cnn_face_detection_model_v1)arg1, (list)imgs [, (int)upsample_num_times=0 [, (int)batch_size=128]]) -> mmod_rectangless :
 |          takes a list of images as input returning a 2d list of mmod rectangles
 |
 |  __init__(...)
 |      __init__( (object)arg1, (str)arg2) -> None
 |
 |  __reduce__ = <unnamed Boost.Python function>(...)
 |
 |  ----------------------------------------------------------------------
 |  Data and other attributes defined here:
 |
 |  __instance_size__ = 984
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from Boost.Python.instance:
 |
 |  __new__(*args, **kwargs) from Boost.Python.class
 |      Create and return a new object.  See help(type) for accurate signature.
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from Boost.Python.instance:
 |
 |  __dict__
 |
 |  __weakref__

inline frontal_face_detector get_frontal_face_detector()
 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/147749.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • Java线程和进程区别

    Java线程和进程区别什么是进程,什么是线程?进程:是并发执行的程序在执行过程中分配和管理资源的基本单位,是一个动态概念,竞争计算机系统资源的基本单位。线程:是进程的一个执行单元,是进程内科调度实体。比进程更小的独立运行的基本单位。线程也被称为轻量级进程。一个程序至少一个进程,一个进程至少一个线程。进程线程的区别1、地址空间:同一进程的线程共享本进程的地址空间,而进程之间则是独立的地址空间。2、…

  • linux系统添加审计用户并进行权限控制「建议收藏」

    linux系统添加审计用户并进行权限控制「建议收藏」审计账号只用于审计功能,其权限可在普通账号基础上进行修改1) 创建审计账号shenji[root@localhost~]#useraddshenji[root@localhost~]#passwdshenji2) 修改审计账号权限使其只具有查看功能[root@localhost~]#setfacl-mu:shenji:rx/*此命令是添加acl权限控制,效果…

  • 计算机水平考试模块数量,职称计算机考试科目、模块数量是什么「建议收藏」

    计算机水平考试模块数量,职称计算机考试科目、模块数量是什么「建议收藏」职称计算机考试科目、模块数量是什么全国计算机应用能力考试坚持”实事求是,区别对待,逐步提高”的原则,不同地区、不同部门根据本地区、本部门的实际情况,确定适合本地区、本部门的考试范围要求。1、不同地区和部门自主确定应考科目数量在对专业技术人员计算机应用能力的具体要求上,各省、自治区、直辖市人事厅(局)和国务院有关部门干部(人事)部门应结合本地区、本部门的实际情况,确定本地区、本部门在评聘专业技术职务…

  • BigDecimal.setScale用法总结

    1. BigDecimalnum1=newBigDecimal(2.225667);//这种写法不允许,会造成精度损失2. BigDecimalnum2=newBigDecimal(2);//这种写法是可以的3. BigDecimalnum=newBigDecimal("2.225667");//一般都会这样写最好4. intcount=num.scale();  …

  • springboot rabbitmq 之死信队列(延迟消费消息)「建议收藏」

    springboot rabbitmq 之死信队列(延迟消费消息)

  • Unity Excel转Json小工具excel2json

    Unity Excel转Json小工具excel2json在开发中表格转字符数据必不可少,在Github搜到一个小工具excel2json,还不错,并且支持批量操作给出的官方文档:https://neil3d.github.io/app/excel2json.html下面是快速上手说明把表格支持直接多拽数组及字典形式的Json(字典是…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号