Python 递归函数

Python 递归函数递归函数在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。递归函数特性:必须有一个明确的结束条件; 每次进入更深一层递归时,问题规模相比上次递归都应有所减少 相邻两次重复之间有紧密的联系,前一次要为后一次做准备(通常前一次的输出就作为后一次的输入)。 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实…

大家好,又见面了,我是你们的朋友全栈君。

递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

递归函数特性:

  1. 必须有一个明确的结束条件;
  2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少
  3. 相邻两次重复之间有紧密的联系,前一次要为后一次做准备(通常前一次的输出就作为后一次的输入)。
  4. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)

先举个简单的例子:计算1到100之间相加之和;通过循环和递归两种方式实现

# 循环方式 
def sum_cycle(n): 
    sum = 0 
    for i in range(1,n+1) : 
        sum += i print(sum)

# 递归方式 
def sum_recu(n): 
    if n>0: 
       return n +sum_recu(n-1) 
    else: 
       return 0 

sum_cycle(100) 
sum = sum_recu(100) print(sum)

结果:

5050
5050

 

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

***使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。

把上面的递归求和函数的参数改成10000就导致栈溢出!

RecursionError: maximum recursion depth exceeded in comparison

**解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

 

一般递归

def normal_recursion(n):
    if n == 1:
        return 1
    else:
        return n + normal_recursion(n-1)

执行:

normal_recursion(5)
5 + normal_recursion(4)
5 + 4 + normal_recursion(3)
5 + 4 + 3 + normal_recursion(2)
5 + 4 + 3 + 2 + normal_recursion(1)
5 + 4 + 3 + 3
5 + 4 + 6
5 + 10
15

可以看到, 一般递归, 每一级递归都需要调用函数, 会创建新的栈,随着递归深度的增加, 创建的栈越来越多, 造成爆栈:boom:

 

尾递归(http://www.open-open.com/lib/view/open1480494663229.html

尾递归基于函数的尾调用, 每一级调用直接返回函数的返回值更新调用栈,而不用创建新的调用栈, 类似迭代的实现, 时间和空间上均优化了一般递归!

def tail_recursion(n, total=0):
    if n == 0:
        return total
    else:
        return tail_recursion(n-1, total+n)

执行:

tail_recursion(5)
tail_recursion(4, 5)
tail_recursion(3, 9)
tail_recursion(2, 12)
tail_recursion(1, 14)
tail_recursion(0, 15)
15

可以看到, 每一级递归的函数调用变成”线性”的形式.

深入理解尾递归

呃, 所以呢? 是不是感觉还不够过瘾… 谁说尾递归调用就不用创建新的栈呢?

还是让我们去底层一探究竟吧

int tail_recursion(int n, int total) {
    if (n == 0) {
        return total;
    }
    else {
        return tail_recursion(n-1, total+n);
    }
}

int main(void) {
    int total = 0, n = 4;
    tail_recursion(n, total);
    return 0;
}

反汇编

  • $ gcc -S tail_recursion.c -o normal_recursion.S

  • $ gcc -S -O2 tail_recursion.c -o tail_recursion.S gcc开启尾递归优化

对比反汇编代码如下(AT&T语法)

Python 递归函数

可以看到, 开启尾递归优化前, 使用call调用函数, 创建了新的调用栈(LBB0_3);

而开启尾递归优化后, 就没有新的调用栈生成了, 而是直接pop

bp指向的 _tail_recursion 函数的地址(pushq %rbp)然后返回,

Python 递归函数

仍旧用的是同一个调用栈!

存在的问题

虽然尾递归优化很好, 但python 不支持尾递归,递归深度超过1000时会报错

一个牛人想出的解决办法

实现一个 tail_call_optimized 装饰器

#!/usr/bin/env python2.4
# This program shows off a python decorator(
# which implements tail call optimization. It
# does this by throwing an exception if it is
# it's own grandparent, and catching such
# exceptions to recall the stack.

import sys

class TailRecurseException:
    def __init__(self, args, kwargs):
        self.args = args
        self.kwargs = kwargs

def tail_call_optimized(g):
    """
    This function decorates a function with tail call
    optimization. It does this by throwing an exception
    if it is it's own grandparent, and catching such
    exceptions to fake the tail call optimization.

    This function fails if the decorated
    function recurses in a non-tail context.
    """
    def func(*args, **kwargs):
        f = sys._getframe()
        # 为什么是grandparent, 函数默认的第一层递归是父调用,
        # 对于尾递归, 不希望产生新的函数调用(即:祖父调用),
        # 所以这里抛出异常, 拿到参数, 退出被修饰函数的递归调用栈!(后面有动图分析)
        if f.f_back and f.f_back.f_back \
            and f.f_back.f_back.f_code == f.f_code:
            # 抛出异常
            raise TailRecurseException(args, kwargs)
        else:
            while 1:
                try:
                    return g(*args, **kwargs)
                except TailRecurseException, e:
                    # 捕获异常, 拿到参数, 退出被修饰函数的递归调用栈
                    args = e.args
                    kwargs = e.kwargs
    func.__doc__ = g.__doc__
    return func

@tail_call_optimized
def factorial(n, acc=1):
    "calculate a factorial"
    if n == 0:
        return acc
    return factorial(n-1, n*acc)

print factorial(10000)

为了更清晰的展示开启尾递归优化前、后调用栈的变化和tail_call_optimized装饰器抛异常退出递归调用栈的作用, 我这里利用 pudb调试工具 做了动图 <br/>

开启尾递归优化前的调用栈

Python 递归函数

开启尾递归优化后(tail_call_optimized装饰器)的调用栈

Python 递归函数

通过pudb右边栏的stack, 可以很清晰的看到调用栈的变化.

因为尾递归没有调用栈的嵌套, 所以Python也不会报 RuntimeError: maximum recursion depth exceeded 错误了!

这里解释一下 sys._getframe() 函数:

sys._getframe([depth]):
Return a frame object from the call stack.
If optional integer depth is given, return the frame object that many calls below the top of the stack.
If that is deeper than the call stack, ValueEfror is raised. The default for depth is zero,
returning the frame at the top of the call stack.

即返回depth深度调用的栈帧对象.

import sys

def get_cur_info():
    print sys._getframe().f_code.co_filename  # 当前文件名
    print sys._getframe().f_code.co_name  # 当前函数名
    print sys._getframe().f_lineno # 当前行号
    print sys._getframe().f_back # 调用者的帧

补充

二分法查找大家应该听说过;就是一种快速查找的方法,时间复杂度低,逻辑简单易懂,总的来说就是不断的找出中间值,用中间值对比你需要找的实际值;若中间值大,则继续找左边;若中间值小,则继续找右边;可以看出二分法就是不断重复此上过程,所以就可以通过递归方式来实现二分法查找了!

#The binary search function

def  Binary_Search(data_source,find_n):
    #判断列表长度是否大于1,小于1就是一个值
    if len(data_source) >= 1: 
        #获取列表中间索引;奇数长度列表长度除以2会得到小数,通过int将转换整型     
        mid = int(len(data_source)/2) 
        #判断查找值是否超出最大值   
        if find_n > data_source[-1]:                                    
            print('{}查找值不存在!'.format(find_n))
            exit()
        #判断查找值是否超出最小值
        elif find_n < data_source[0]:                                   
            print('{}查找值不存在!'.format(find_n))
            exit()
        #判断列表中间值是否大于查找值
        if data_source[mid]  > find_n:                                  
            print('查找值在 {} 左边'.format(data_source[mid]))
            #调用自己,并将中间值左边所有元素做参数
            Binary_Search(data_source[:mid],find_n)  
        #判断列表中间值是否小于查找值                   
        elif data_source[mid] < find_n:                                 
            #print('查找值在 {} 右边'.format(data_source[mid]))     
            #调用自己,并将中间值右边所有元素做参数      
            Binary_Search(data_source[mid:],find_n)
        else:
            #找到查找值
            print('找到查找值',data_source[mid])                          
    else:
        #特殊情况,返回查找不到
        print('{}查找值不存在!'.format(find_n))                          

Data = [22,12,41,99,101,323,1009,232,887,97]
#列表从小到大排序
Data.sort()       
#查找323                                                      
Binary_Search(Data,323)   
                                              
执行结果:
找到查找值 323
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/147628.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • translate3d模拟滚动条

    translate3d模拟滚动条做移动端页面,通常是不用原生的scroll,而是用translate3d来模拟,原因主要是原生的scroll对移动端的支持并不是很好,样式也不好看(有滚动条出现),用translate3d来模拟还可以调用GPU来加速,提高性能。html:

    2022年10月27日
  • html网站怎么注入_跨站脚本攻击原理

    html网站怎么注入_跨站脚本攻击原理跨站脚本攻击(XSS)是一种客户端代码注入攻击。攻击者通过在合法的网页中注入恶意代码,达到在受害者的浏览器中执行恶意代码的目的。当受害者访问执行恶意代码的网页时,攻击就开始了。这些网页成为了将恶意代码发送到用户浏览器的工具。通常受到跨站脚本攻击的网页包括论坛、留言板以及可以评论的网页。如果网页将用户的原始输入作为网页内容,那么它很容易受到XSS攻击,因为这类用户输入一定会被受害者的浏览器解析。…

    2022年10月29日
  • Java 版学生成绩管理系统,附源码[通俗易懂]

    Java 版学生成绩管理系统,附源码[通俗易懂]前言对于计算机专业的学生来讲,一定对于学生成绩管理系统课程设计十分印象深刻。设计、上机、编码、写报告、答辩等一系列流程,虽然很简单,但也可以综合运用我们所学的一些知识了。今天就来复习以下这个课题,用JavaSE来实现该课题,也算是补上当初上课的时候没有好好写的遗憾吧。虽然很简单,但是对于刚涉足编程学习的人来讲,还是有一定难度的,既要考虑界面打印,也要考虑条件判断、循环语句、输入输出控制等等技巧,所以在这里简单地实现一下,方便给初学的小伙伴们一个参考(对于我的界面比较丑的问题,就不要过于纠结了,下

  • MobX学习之旅

    MobX学习之旅

  • GoLand 2021.8 激活码【最新永久激活】「建议收藏」

    (GoLand 2021.8 激活码)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.htmlS32PGH0SQB-eyJsaWN…

  • 【从翻译mos文章】Weblogic AdminServer 启动fail,报错&quot;unable to get file lock, will retry&quot;

    【从翻译mos文章】Weblogic AdminServer 启动fail,报错&quot;unable to get file lock, will retry&quot;

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号