大家好,又见面了,我是你们的朋友全栈君。
PR曲线概念
PR曲线中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系,一般情况下,将recall设置为横坐标,precision设置为纵坐标。
precision(精准率)和recall(召回率)
上述中介少了PR曲线的实质代表为precision(精准率)和recall(召回率),但是这二者是什么呢?下面咱们进行相关的讲述。
首先,我们了解一下混淆矩阵,如下表。
其中,把正例正确地分类为正例,表示为TP(true positive),把正例错误地分类为负例,表示为FN(false negative)。把负例正确地分类为负例,表示为TN(true negative), 把负例错误地分类为正例,表示为FP(false positive)。
从混淆矩阵可以得出精准率与召回率:
precision = TP/(TP + FP)
recall = TP/(TP +FN)
PR曲线功能说明
一条PR曲线要对应一个阈值(统计学的概率)。通过选择合适的阈值(比如K%)对样本进行合理的划分,概率大于K%的样本为正例,小于K%的样本为负例,样本分类完成后计算相应的精准率和召回率,最后我们会得到对应关系,如下图所示。
在众多学习器对数据进行学习后,如果其中一个学习器的PR曲线A完全包住另一个学习器B的PR曲线,则可断言A的性能优于B。但是A和B发生交叉,那性能该如何判断呢?我们可以根据曲线下方的面积大小来进行比较,但更常用的是平衡点F1。平衡点(BEP)是P=R时的取值(斜率为1),F1值越大,我们可以认为该学习器的性能较好。F1的计算如下所示:
F1 = 2 * P * R /( P + R )
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/147520.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...