大家好,又见面了,我是你们的朋友全栈君。
在前面的文章中我们讲到了回归模型和分类模型的评估指标,区分了准确率和精确率的区别,并且比较了精确率和召回率内在的联系。本篇文章我们再来学习另外一个评估方法,即混淆矩阵(confusion_matrix)。
在讲矩阵之前,我们先复习下之前在讲分类评估指标中定义的一些符号含义,如下:
- TP(True Positive):将正类预测为正类数,真实为0,预测也为0
- FN(False Negative):将正类预测为负类数,真实为0,预测为1
- FP(False Positive):将负类预测为正类数, 真实为1,预测为0
- TN(True Negative):将负类预测为负类数,真实为1,预测也为1
混淆矩阵定义及表示含义
混淆矩阵是机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型预测的类别判断两个标准进行汇总。其中矩阵的行表示真实值,矩阵的列表示预测值,下面我们先以二分类为例,看下矩阵表现形式,如下:
二分类混淆矩阵
现在我们举个列子,并画出混淆矩阵表,假如宠物店有10只动物,其中6只狗,4只猫,现在有一个分类器将这10只动物进行分类,分类结果为5只狗,5只猫,那么我们画出分类结果混淆矩阵,并进行分析,如下(我们把狗作为正类):
猫狗分类混淆矩阵
通过混淆矩阵我们可以轻松算的真实值狗的数量(行数量相加)为6=5+1,分类得到狗的数量(列数量相加)为5=5+0,真实猫的数量为4=0+4,分类得到猫的数量为5=1+4。同时,我们不难发现,对于二分类问题,矩阵中的4个元素刚好表示TP,TN,FP,TN这四个符号量,如下图:
那么对于二分类问题来说,
精确率Precision=a/(a+c)=TP/(TP+FP),TP+FP是实际被检索到的样本数。
召回率recall=a/(a+b)=TP/(TP+FN),TP+FN是应该检索到的样本数
准确率accuracy=(a+d)/(a+b+c+d)=(TP+FN+FP+TN),可以看到准确率中的分子值就是矩阵对角线上的值。
刚才分析的是二分类问题,那么对于多分类问题,混淆矩阵表示的含义也基本相同,这里我们以三类问题为例,看看如何根据混淆矩阵计算各指标值。
多分类混淆矩阵
与二分类混淆矩阵一样,矩阵行数据相加是真实值类别数,列数据相加是分类后的类别数,那么相应的就有以下计算公式;
精确率_类别1=a/(a+d+g)
召回率_类别1=a/(a+b+c)
Python中的sklearn库提供了相应的方法来输出矩阵数据,非常方便,函数如下:
sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)
其中,y_true:是样本真实分类结果,y_pred 是样本预测分类结果 ,labels是所给出的类别,通过这个可对类别进行选择 ,sample_weight 是样本权重。这里我们用代码演示三分类问题混淆矩阵(这里我们用confusion_matrix生成矩阵数据,然后用seaborn的热度图绘制出混淆矩阵数据),如下:
#导入依赖包
import seaborn as sns;from sklearn.metrics import confusion_matriximport
matplotlib.pyplot as pltsns.set()
y_true = ["cat", "dog", "cat", "cat", "dog", "rebit"]
y_pred = ["dog", "dog", "rebit", "cat", "dog", "cat"]
C2= confusion_matrix(y_true, y_pred, labels=["dog", "rebit", "cat"])
sns.heatmap(C2,annot=True)
多分类混淆矩阵
至此,关于模型评估个各指标已全部介绍完毕,后面的文章我们将开始讲解一些经典算法的推导及使用,喜欢的小伙伴请点击关注!
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/146686.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...