分层抽样不按比例如何加权_按比例分层抽样和定额抽样的区别?

分层抽样不按比例如何加权_按比例分层抽样和定额抽样的区别?从宏观上,两者的目的都是为了提供更好的样本代表性,并且两者的理论基础都来自于:总体的个体的同质性越高,抽样误差越小,样本的代表性越好。两者的本质区别在于是否以概率为基础,比例分层抽样是概率抽样而后者是非概率抽样。从最宏观的角度来说,比例分层抽样产生的样本是随机抽样样本,其本身可以进行抽样误差的评估和推断检验,进而把你样本的结论推广到总体。而定额抽样本身不具备这种可能。从具体操作上,两者都需要选取一…

大家好,又见面了,我是你们的朋友全栈君。

从宏观上,两者的目的都是为了提供更好的样本代表性,并且两者的理论基础都来自于:总体的个体的同质性越高,抽样误差越小,样本的代表性越好。

两者的本质区别在于是否以概率为基础,比例分层抽样是概率抽样而后者是非概率抽样。从最宏观的角度来说,比例分层抽样产生的样本是随机抽样样本,其本身可以进行抽样误差的评估和推断检验,进而把你样本的结论推广到总体。而定额抽样本身不具备这种可能。

从具体操作上,两者都需要选取一定的变量作为分组依据,并且都需要根据各组/总体的数量比例对样本结果进行加权。

但是,分层抽样在确定分层变量之后,对每一个组内需要随机抽样或者等距抽样,这就使得每一个小组中的样本是随机样本,且合并后的样本也是随机样本。而配额抽样则不要求随机抽样,可以使用其他的非概率抽样,比如雪球抽样。第二,关于加权,分层抽样对每个小组的样本数进行控制而配额抽样对subsample size不做要求,仅仅变量的结果上进行加权。

关于两者优劣,分层抽样提供了推断统计的基础。并且尤其随机抽样或者系统抽样的产生,避免了一些外在的偏差。比如,在配额抽样中,看上去友好的人有更高的几率被抽到。但是,很多时候,分层抽样并不具有可能性。比如,在研究边缘群体时,并没有现成的、几乎包括所有组成你研究总体的个体的名单存在,这个时候定额抽样就更适用。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/146603.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号