数模(6):Leslie矩阵人口模型

数模(6):Leslie矩阵人口模型上期中介绍了两种利用非线性函数拟合人口与物种增长趋势的方法。这两种方法都可以用于对人口与物种增长的总体趋势进行预测,但预测不够精细。我们知道在正常社会条件或自然条件下,生育率与死亡率是与群体的年龄构成息息相关的。我们需要对整个群体按年龄进行层次划分,构建与年龄相联系的人口模型。典型的例子就是Leslie矩阵模型。Leslie矩阵介绍我们把整个社会中的人群按年龄等距分成n组,每组中该年的人口总数…

大家好,又见面了,我是你们的朋友全栈君。

上期中介绍了两种利用非线性函数拟合人口与物种增长趋势的方法。这两种方法都可以用于对人口与物种增长的总体趋势进行预测,但预测不够精细。我们知道在正常社会条件或自然条件下,生育率与死亡率是与群体的年龄构成息息相关的。我们需要对整个群体按年龄进行层次划分,构建与年龄相联系的人口模型。典型的例子就是Leslie矩阵模型。

Leslie矩阵介绍

我们把整个社会中的人群按年龄等距分成n组,每组中该年的人口总数为 a i , i = 1 , 2 , . . . , n a_i,i=1,2,…,n ai,i=1,2,...,n,每组人口的每年的普遍存活率为 c i , i = 1 , 2 , . . . , n − 1 c_i,i=1,2,…,n-1 ci,i=1,2,...,n1(设最后一组下一年全部死亡),每组人口的每年普遍生育率为 b i , i = 1 , 2 , . . . , n b_i,i=1,2,…,n bi,i=1,2,...,n,则下一年每组中的人口总数 a i ′ , i = 1 , 2 , . . . , n a’_i,i=1,2,…,n ai,i=1,2,...,n就满足递推关系式 { a i ′ = a i − 1 c i − 1 , i = 2 , 3 , . . . , n a 1 ′ = ∑ i = 1 n a i b i \begin{cases}a’_i=a_{i-1}c_{i-1},i=2,3,…,n\\a’_1=\sum_{i=1}^{n}a_ib_i\end{cases} {
ai=ai1ci1,i=2,3,...,na1=i=1naibi

该式可写成矩阵乘向量的形式:
a ′ ⃗ = ( b 1 b 2 . . . b n − 1 b n c 1 0 . . . 0 0 0 c 2 . . . 0 0 ⋮ ⋮ ⋮ 0 0 . . . c n − 1 0 ) ( a 1 , a 2 , . . . , a n ) T \vec{a’}= \left( \begin{matrix} b_1&b_2&…&b_{n-1}&b_n\\ c_1&0&…&0&0\\ 0&c_2&…&0&0\\ \vdots&\vdots&&\vdots\\ 0&0&…&c_{n-1}&0 \end{matrix} \right) (a_1,a_2,…,a_n)^T a
=
b1c100b20c20............bn100cn1bn000(a1,a2,...,an)T

该式中左边的矩阵就是Leslie矩阵。

Leslie矩阵性质

  1. Leslie矩阵有唯一的单重正特征值 λ 1 \lambda_1 λ1,对应的特征向量 x ⃗ 1 = ( 1 , b 1 / λ 1 , c 1 c 2 / λ 1 2 , . . . , c 1 c 2 . . . c n − 1 / λ 1 n − 1 ) T \vec x_1=(1,b_1/\lambda_1,c_1c_2/\lambda_1^2,…,c_1c_2…c_{n-1}/\lambda_1^{n-1})^T x
    1
    =
    (1,b1/λ1,c1c2/λ12,...,c1c2...cn1/λ1n1)T

证明:设n阶的该矩阵为Ln,n阶的特征多项式为Pn,则有
P n = ∣ λ I − L n ∣ = ∣ λ − b 1 − b 2 . . . − b n − 1 − b n − c 1 λ . . . 0 0 0 − c 2 . . . 0 0 ⋮ ⋮ ⋮ 0 0 . . . − c n − 1 λ ∣ P_n=|\lambda I-L_n|= \left| \begin{matrix} \lambda-b_1&-b_2&…&-b_{n-1}&-b_n\\ -c_1&\lambda&…&0&0\\ 0&-c_2&…&0&0\\ \vdots&\vdots&&\vdots&&\\ 0&0&…&-c_{n-1}&\lambda \end{matrix} \right| Pn=λILn=λb1c100b2λc20............bn100cn1bn00λ
= > P n = λ ∣ λ − b 1 − b 2 . . . − b n − 2 − b n − 1 − c 1 λ . . . 0 0 0 − c 2 . . . 0 0 ⋮ ⋮ ⋮ 0 0 . . . − c n − 2 λ ∣ + c n − 1 ∣ λ − b 1 − b 2 . . . − b n − 3 − b n − 1 − c 1 λ . . . 0 0 0 − c 2 . . . 0 0 ⋮ ⋮ ⋮ 0 0 . . . − c n − 2 0 ∣ =>P_n=\lambda \left| \begin{matrix} \lambda-b_1&-b_2&…&-b_{n-2}&-b_{n-1}\\ -c_1&\lambda&…&0&0\\ 0&-c_2&…&0&0\\ \vdots&\vdots&&\vdots&&\\ 0&0&…&-c_{n-2}&\lambda \end{matrix} \right|+c_{n-1} \left| \begin{matrix} \lambda-b_1&-b_2&…&-b_{n-3}&-b_{n-1}\\ -c_1&\lambda&…&0&0\\ 0&-c_2&…&0&0\\ \vdots&\vdots&&\vdots&&\\ 0&0&…&-c_{n-2}&0 \end{matrix} \right| =>Pn=λλb1c100b2λc20............bn200cn2bn100λ+cn1λb1c100b2λc20............bn300cn2bn1000
= > P n = λ P n − 1 + c n − 1 ( − b n − 1 ) ( c 1 c 2 . . . c n − 2 ) ( − 1 ) n − 2 ( − 1 ) n − 2 = > P n = λ P n − 1 − b n − 1 c 1 c 2 . . . c n − 1 =>P_n=\lambda P_{n-1}+c_{n-1}(-b_{n-1})(c_1c_2…c_{n-2})(-1)^{n-2}(-1)^{n-2}=> P_n=\lambda P_{n-1}-b_{n-1}c_1c_2…c_{n-1} =>Pn=λPn1+cn1(bn1)(c1c2...cn2)(1)n2(1)n2=>Pn=λPn1bn1c1c2...cn1
= > P n = λ P n − 1 − β n − 1 = > P n = λ n − β 1 λ n − 1 − β 2 λ n − 2 − . . . − β n = > =>P_n=\lambda P_{n-1}-\beta_{n-1}=> P_n=\lambda^n-\beta_1\lambda^{n-1}-\beta_2\lambda^{n-2}-…-\beta_n=> =>Pn=λPn1βn1=>Pn=λnβ1λn1β2λn2...βn=>
0 = λ n − β 1 λ n − 1 − β 2 λ n − 2 − . . . − β n = > P n = λ n − β 1 λ n − 1 − β 2 λ n − 2 − . . . − β n = > 0=\lambda^n-\beta_1\lambda^{n-1}-\beta_2\lambda^{n-2}-…-\beta_n=>P_n=\lambda^n-\beta_1\lambda^{n-1}-\beta_2\lambda^{n-2}-…-\beta_n=> 0=λnβ1λn1β2λn2...βn=>Pn=λnβ1λn1β2λn2...βn=>
1 = β 1 λ − 1 + β 2 λ − 2 + . . . + β n λ − n 1=\beta_1\lambda^{-1}+\beta_2\lambda^{-2}+…+\beta_n\lambda^{-n} 1=β1λ1+β2λ2+...+βnλn右边的函数是单调连续减函数,且 λ \lambda λ无穷大时趋近0、 λ \lambda λ趋近于0时趋近正无穷,所以有唯一正特征根 λ 1 \lambda_1 λ1,对应的特征向量为 x ⃗ 1 = ( 1 , b 1 / λ 1 , c 1 c 2 / λ 1 2 , . . . , c 1 c 2 . . . c n − 1 / λ 1 n − 1 ) T \vec x_1=(1,b_1/\lambda_1,c_1c_2/\lambda_1^2,…,c_1c_2…c_{n-1}/\lambda_1^{n-1})^T x
1
=
(1,b1/λ1,c1c2/λ12,...,c1c2...cn1/λ1n1)T

  1. 所有负的特征值都满足 ∣ λ ∣ < λ 1 |\lambda|<\lambda_1 λ<λ1,称 λ 1 \lambda_1 λ1严格优势特征值

证明:设有特征值满足 ∣ λ ∣ ≥ λ 1 = > λ ≥ − λ 1 |\lambda|\geq\lambda_1=>\lambda\geq-\lambda_1 λλ1=>λλ1,则有其依然满足 1 = β 1 λ − 1 + β 2 λ − 2 + . . . + β n λ − n 1=\beta_1\lambda^{-1}+\beta_2\lambda^{-2}+…+\beta_n\lambda^{-n} 1=β1λ1+β2λ2+...+βnλn ,而 1 = β 1 λ 1 − 1 + β 2 λ 1 − 2 + . . . + β n λ 1 − n ≥ β ∣ λ − 1 ∣ + β ∣ λ − 2 ∣ + . . . + β ∣ λ − n ∣ > β λ − 1 + β λ − 2 + . . . + β λ − n 1=\beta_1\lambda_1^{-1}+\beta_2\lambda_1^{-2}+…+\beta_n\lambda_1^{-n} \geq\beta|\lambda^{-1}|+\beta|\lambda^{-2}|+…+\beta|\lambda^{-n}|>\beta\lambda^{-1}+\beta\lambda^{-2}+…+\beta\lambda^{-n} 1=β1λ11+β2λ12+...+βnλ1nβλ1+βλ2+...+βλn>βλ1+βλ2+...+βλn,矛盾

  1. 对于任意人口分布向量 x ⃗ \vec x x
    ,其迭代k次后的结果有 lim ⁡ k − > + ∞ x ⃗ ( k ) λ 1 k = c x ⃗ 1 \displaystyle \lim_{k->+∞} \frac{\vec x^{(k)}}{\lambda_1^k}=c\vec x_1 k>+limλ1kx
    (k)
    =
    cx
    1
    (c为常数),即迭代了无穷多次时,人口的分布比例趋近于特征向量 x ⃗ 1 \vec x_1 x
    1
    ,而人口增长率趋近于特征值 λ 1 \lambda_1 λ1

证明:仅对可化为对角阵的情况进行证明(一般情况需要用到约旦标准型)。 lim ⁡ k − > + ∞ x ⃗ ( k ) λ 1 k = lim ⁡ k − > + ∞ L k x ⃗ ( 0 ) λ 1 k = lim ⁡ k − > + ∞ ( P d i a g ( λ 1 , λ 2 , . . . , λ n ) P − 1 ) k x ⃗ ( 0 ) λ 1 k = lim ⁡ k − > + ∞ P d i a g ( λ 1 k , λ 2 k , . . . , λ n k ) P − 1 x ⃗ ( 0 ) λ 1 k = lim ⁡ k − > + ∞ P d i a g ( 1 , λ 2 k / λ 1 k , . . . , λ n k / λ 1 k ) P − 1 x ⃗ ( 0 ) \displaystyle \lim_{k->+∞} \frac{\vec x^{(k)}}{\lambda_1^k}=\displaystyle \lim_{k->+∞} \frac{L^k\vec x^{(0)}}{\lambda_1^k}=\displaystyle \lim_{k->+∞} \frac{(Pdiag(\lambda_1,\lambda_2,…,\lambda_n)P^{-1})^k\vec x^{(0)}}{\lambda_1^k}=\displaystyle \lim_{k->+∞} \frac{Pdiag(\lambda_1^k,\lambda_2^k,…,\lambda_n^k)P^{-1}\vec x^{(0)}}{\lambda_1^k}=\displaystyle \lim_{k->+∞} Pdiag(1,\lambda_2^k/\lambda_1^k,…,\lambda_n^k/\lambda_1^k)P^{-1}\vec x^{(0)} k>+limλ1kx
(k)
=
k>+limλ1kLkx
(0)
=
k>+limλ1k(Pdiag(λ1,λ2,...,λn)P1)kx
(0)
=
k>+limλ1kPdiag(λ1k,λ2k,...,λnk)P1x
(0)
=
k>+limPdiag(1,λ2k/λ1k,...,λnk/λ1k)P1x
(0)
,由于 λ 1 \lambda_1 λ1严格优势特征值,有 原 式 = lim ⁡ k − > + ∞ P d i a g ( 1 , 0 , . . . , 0 ) P − 1 x ⃗ ( 0 ) = ( x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n ) d i a g ( 1 , 0 , . . . , 0 ) ( x ⃗ 1 ′ , x ⃗ 2 ′ , . . . , x ⃗ n ′ ) ( a 1 , a 2 , . . . , a n ) T = c x ⃗ 1 原式=\displaystyle \lim_{k->+∞} Pdiag(1,0,…,0)P^{-1}\vec x^{(0)}=(\vec x_1,\vec x_2,…,\vec x_n)diag(1,0,…,0)(\vec x’_1,\vec x’_2,…,\vec x’_n)(a_1,a_2,…,a_n)^T=c\vec x_1 =k>+limPdiag(1,0,...,0)P1x
(0)
=
(x
1
,x
2
,...,x
n
)diag(1,0,...,0)(x
1
,x
2
,...,x
n
)(a1,a2,...,an)T=
cx
1

总结

列出Leslie矩阵,我们即可对人口年龄分布进行迭代。且无论一开始的人口分布向量如何,人口比例在迭代无数次之后总趋近于特征向量 x ⃗ 1 \vec x_1 x
1
。而人口增长率趋近于特征值 λ 1 \lambda_1 λ1,说明特征值 λ 1 \lambda_1 λ1可以用于预测人口增长速度,对于计生有重要意义。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/146422.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • REST API和SOAP API区别[通俗易懂]

    REST API和SOAP API区别[通俗易懂]RESTAPI优点:1.轻量级的解决方案,不必向SOAP那样要构建一个标准的SOAPXML。2.可读性比较好:可以把URL的名字取得有实际意义。3.不需要SDK支持:直接一个Http请求就可以,但是SOAP则可能需要使用到一些Webservice的类库(例如Apache的Axis)缺点:1.复杂的应用中,URL可能非常长,而且不容易解析。SOAPAPI优点:1.定…

  • 【Linux】NAT模式下关于主机ping不通虚拟机的问题

    【Linux】NAT模式下关于主机ping不通虚拟机的问题今天打开虚拟机,然后用Xshell远程连接,发现连接不上。按照以下顺序检查了一遍。1.虚拟机网络连接采用的是NAT模式2.虚拟机IP采用的是自动获取。IP:192.168.191.130子网掩码:255.255.255.0默认网关:192.168.191.23.虚拟机ping主机,可以ping通主机IP地址为:192.168.1.2444.主机ping虚拟机,请求超时5.原因分析最大的原

  • 阿里算法内推笔试题

    阿里算法内推笔试题#include#include#include#include#include#include#include#include#definepi3.1415926#defineNUM10000usingnamespace

  • 平面图上的欧拉公式

    平面图上的欧拉公式V-E+F=2,V、E、F表示顶点数、边数、面数。

  • PPP之PAP与CHAP经典验证案例

    PPP之PAP与CHAP经典验证案例

  • java mysql 分区表_mysql分区表

    java mysql 分区表_mysql分区表对用户来说,分区表是一个独立的逻辑表,但是底层由多个物理子表组成。实现分区的代码实际上是对一组底层表的句柄对象的封装。mysql在创建表时使用PARTITIONBY子句定义每个分区存放的数据。在执行查询的时候,优化器会根据分区定义过滤那些没有我们需要数据的分区,这样查询就无须扫描所有分区——只需要查询包含需要数据的分区就可以了。分区的一个主要目的是将数据按照一个较粗的粒度分在不同的表中,这样做可…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号