pandas groupby 用法详解

pandas groupby 用法详解1.分组groupby在日常数据分析过程中,经常有分组的需求。具体来说,就是根据一个或者多个字段,将数据划分为不同的组,然后进行进一步分析,比如求分组的数量,分组内的最大值最小值平均值等。在sql中,就是大名鼎鼎的groupby操作。pandas中,也有对应的groupby操作,下面我们就来看看pandas中的groupby怎么使用。2.groupby的数据结构首先我们看如下代码defddd():levels=[“L1″,”L1″,”L1″,”L2″,”L2″,”L3”,

大家好,又见面了,我是你们的朋友全栈君。

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

1.分组groupby

在日常数据分析过程中,经常有分组的需求。具体来说,就是根据一个或者多个字段,将数据划分为不同的组,然后进行进一步分析,比如求分组的数量,分组内的最大值最小值平均值等。在sql中,就是大名鼎鼎的groupby操作。
pandas中,也有对应的groupby操作,下面我们就来看看pandas中的groupby怎么使用。

2.groupby的数据结构

首先我们看如下代码

def ddd():
    levels = ["L1", "L1", "L1", "L2", "L2", "L3", "L3"]
    nums = [10, 20, 30, 20, 15, 10, 12]
    df = pd.DataFrame({"level": levels, "num": nums})
    g = df.groupby('level')
    print(g)
    print()
    print(list(g))

输出结果如下:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x10f6f96d0>

[('L1',   level  num
0    L1   10
1    L1   20
2    L1   30), ('L2',   level  num
3    L2   20
4    L2   15), ('L3',   level  num
5    L3   10
6    L3   12)]

做groupby操作以后,得到的是一个DataFrameGroupBy对象,直接打印该对象的话,显示的是其内存地址。
为了方便地观察数据,我们使用list方法转换一下,发现其是一个元组,元组中的第一个元素,是level的值。元祖中的第二个元素,则是其组别下的整个dataframe。

3.groupby的基本用法

def group1():
    levels = ["L1", "L1", "L1", "L2", "L2", "L3", "L3"]
    nums = [10, 20, 30, 20, 15, 10, 12]
    scores = [100, 200, 300, 200, 150, 100, 120]
    df = pd.DataFrame({"level": levels, "num": nums, "score": scores})
    result = df.groupby('level').agg({'num': 'sum', 'score': 'mean'})
    allnum = result['num'].sum()
    result['rate'] = result['num'].map(lambda x: x / allnum)
    print(result)

最后输出:

       num  score      rate
level                      
L1      60    200  0.512821
L2      35    175  0.299145
L3      22    110  0.188034

上面的例子展示了groupby的基本用法。
对dataframe按照level分组,然后对num列求和,对score列求平均值,可以得到result。
同时,我们还希望得到每个分组中,num的和在所有num和中的占比。于是我们先求num的综合,然后在用map方法,给result添加一列,求得其占比!

4.transform的用法

下面我们看一个更复杂的例子。

def t10():
    levels = ["L1", "L1", "L1", "L2", "L2", "L3", "L3"]
    nums = [10, 20, 30, 20, 15, 10, 12]
    df = pd.DataFrame({"level": levels, "num": nums})
    ret = df.groupby('level')['num'].mean().to_dict()
    df['avg_num'] = df['level'].map(ret)
    print(ret)
    print(df)
{'L1': 20.0, 'L2': 17.5, 'L3': 11.0}
  level  num  avg_num
0    L1   10     20.0
1    L1   20     20.0
2    L1   30     20.0
3    L2   20     17.5
4    L2   15     17.5
5    L3   10     11.0
6    L3   12     11.0

上面的方法,我们对level分组以后,我们想给数据集添加一列,想给每行数据添加每个level对应的平均值。
上面的解法是先求得每个分组的平均值,转成一个dict,然后再使用map方法将每组的平均值添加上去。

def trans():
    levels = ["L1", "L1", "L1", "L2", "L2", "L3", "L3"]
    nums = [10, 20, 30, 20, 15, 10, 12]
    df = pd.DataFrame({"level": levels, "num": nums})
    df['avg_num'] = df.groupby('level')['num'].transform('mean')
    print(df)

如果使用transform方法,代码可以更简单更直观,如上所示。

transform方法的作用:调用函数在每个分组上产生一个与原df相同索引的dataFrame,整体返回与原来对象拥有相同索引且已填充了转换后的值的dataFrame,相当于就是给原来的dataframe添加了一列。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/146270.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • petalinux vdma 学习笔记

    petalinux vdma 学习笔记在petalinux目录下打开终端,使能petalinux环境配置:sourcesettings.sh新建工程目录,最好是petalinux上一层目录下:cd…mkdir/xilinx/my_zc702_prj/DMI_TM6843在DMI_TM6843下新建硬件配置目录;mkdirhddef将vivado中导出.hdf文件放到hddef目录下5.建立工程:peta…

  • java的filter方法(过滤器的功能)

    一.什么是Filter?Filter译为过滤器。 由于Servlet规范是开放的,借助于公众与开源社区的力量,Servlet规范越来越科学,功能也越来越强大。2000年,Sun公司在Servlet2.3规范中添加了Filter功能,并在Servlet2.4中对Filter进行了细节上的补充。二.运行原理:当客户端向服务器端发送一个请求时,如果有对应的过滤器进行拦截,过滤器可以改变请求的内容、或者重…

  • pycharm怎么逐步调试_pycharm的debug失效

    pycharm怎么逐步调试_pycharm的debug失效前言Debug调试,是一项学习编程人员的重要技能。只有当你学会debug了以后,才可以正确的知道程序的走向流程是如何的,今天就来给大家介绍一下pycharm中的debug功能!debug的前世在正式讲解之前,先来了解下debug这个词的由来,就像我们初学Python时,先要了解下它历史的由来。1937年,美国青年霍华德·艾肯找到IBM公司为其投资200万美元研制计算机,第一台成品…

  • windows的定时任务设置

    windows的定时任务设置

    2021年11月15日
  • vue 页面关闭_vue怎么关闭滴一声

    vue 页面关闭_vue怎么关闭滴一声关闭vue中的ESLint

  • pycharm恢复初始设置windows_pycharm中恢复索引

    pycharm恢复初始设置windows_pycharm中恢复索引在windows下,pycharm恢复初始设置C:\User\(用户名)\.pycharmxxxx

    2022年10月25日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号