matlab插值函数的优缺点,Python和Matlab插值函数的不同结果

matlab插值函数的优缺点,Python和Matlab插值函数的不同结果我正在将代码从Matlab转换为Python2.7,在转换interp1函数时遇到问题。我看过已经贴出来的类似问题,但还没有解决。问题是新生成的值(yn)的向量的第一个值不同,而其余的几乎相同。当使用不同的插值方法时,我得到的值略有不同,但是同样的问题。目前我真的不知道为什么会这样。有没有人对此有任何了解或看到我可能犯的错误?谢谢。在变量:x=[5.5,5.46678,5….

大家好,又见面了,我是你们的朋友全栈君。

我正在将代码从Matlab转换为Python2.7,在转换interp1函数时遇到问题。我看过已经贴出来的类似问题,但还没有解决。问题是新生成的值(yn)的向量的第一个值不同,而其余的几乎相同。当使用不同的插值方法时,我得到的值略有不同,但是同样的问题。目前我真的不知道为什么会这样。有没有人对此有任何了解或看到我可能犯的错误?谢谢。在

变量:x = [5.5 , 5.46678 , 5.408315, 5.33929 , 5.261025, 5.17605 ,

5.08684 , 4.995375, 4.902755, 4.80942 , 4.7157 , 4.621815,

4.52782 , 4.433715, 4.339555, 4.245395, 4.151235, 4.05713 ,

3.962915, 3.868645, 3.77432 , 3.680105, 3.585945, 3.491895,

3.397845, 3.303905, 3.21002 , 3.11619 , 3.02247 , 2.928805,

2.835195, 2.741695, 2.64836 , 2.55519 , 2.462295, 2.36951 ,

2.27689 , 2.184435, 2.092255, 2.00035 , 1.908775, 1.817475,

1.726505, 1.63592 , 1.54583 , 1.4564 , 1.36752 , 1.279245,

1.19163 , 1.10539 , 1.02135 , 0.94006 , 0.86163 , 0.786115,

0.713515, 0.64394 , 0.577555, 0.514635, 0.45562 , 0.400785,

0.35035 , 0.304425, 0.26301 , 0.22627 , 0.193875, 0.16544 ,

0.14058 , 0.118745, 0.09944 , 0.082335, 0.067265, 0.05401 ,

0.042405, 0.03234 , 0.023595, 0.01628 , 0.010175, 0.00528 ,

0.001485, -0.00121 , -0.002805, -0.003355, -0.00275 , -0.000935]

y = [0.19896, 0.18722, 0.155 , 0.13133, 0.11168, 0.09543,

0.0815 , 0.06556, 0.04191, 0.0117 , 0.00513, 0.00123,

-0.0036 , -0.00885, -0.01429, -0.01985, -0.02532, -0.03065,

-0.03574, -0.04082, -0.04594, -0.05104, -0.05596, -0.06091,

-0.06561, -0.07023, -0.07482, -0.07913, -0.08341, -0.08749,

-0.09155, -0.09551, -0.09952, -0.10334, -0.10694, -0.11011,

-0.11319, -0.11587, -0.11856, -0.12092, -0.12277, -0.12428,

-0.12506, -0.12567, -0.12567, -0.12497, -0.12369, -0.12135,

-0.11944, -0.1191 , -0.11983, -0.11819, -0.11197, -0.10004,

-0.08016, -0.05285, -0.01569, 0.03055, 0.08527, 0.1492 ,

0.21971, 0.29507, 0.37453, 0.45682, 0.53766, 0.61562,

0.6916 , 0.763 , 0.82907, 0.88665, 0.9367 , 0.97418,

0.99617, 0.99807, 0.97457, 0.91708, 0.81796, 0.66987,

0.46359, 0.19778, -0.13378, -0.54232, -1.0126 , -1.5297 ]

xn = [ 0., 0.61111111, 1.22222222, 1.83333333, 2.44444444,

3.05555556, 3.66666667, 4.27777778, 4.88888889, 5.5 ]

Matlab代码:

^{pr2}$

Python代码:from scipy.interpolate import InterpolatedUnivariateSpline

yn_f1 = InterpolatedUnivariateSpline(x[::-1], y[::-1])

yn_py1 = yn_f1(xn)

from scipy.interpolate import interp1d

yn_f2 = interp1d(x[::-1], y[::-1])

yn_py2 = yn_f2(xn)

import numpy as np

yn_py3 = np.interp(xn, x[::-1], y[::-1])

结果:yn_mat = [-0.7596, -0.0345, -0.1201, -0.1240, -0.1075,

-0.0819, -0.0517, -0.0179, 0.0374, 0.1990 ]

yn_py1 = [-0.23310355, -0.03594415, -0.11996893, -0.12406894, -0.10757466,

-0.08191329, -0.05174936, -0.01793778, 0.0371338 , 0.19896 ]

yn_py2 = [ 0.31712327, -0.03447354, -0.12010691, -0.12401772, -0.10754986,

-0.08189905, -0.05174217, -0.01793785, 0.03742192, 0.19896 ]

yn_py3 = [ 0.31712327, -0.03447354, -0.12010691, -0.12401772, -0.10754986,

-0.08189905, -0.05174217, -0.01793785, 0.03742192, 0.19896 ]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/146082.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Hsql 查询_sql数据查询

    Hsql 查询_sql数据查询还是班级,学省

  • free技术详解 lock_lock free的理解

    free技术详解 lock_lock free的理解转自:http://www.isnowfy.com/understand-to-lock-free/以前一直不明白lockfree是什么,后来发现原来是完全理解错了概念,lockfree看到大家有的翻译为无锁,有的翻译为锁无关,其实用不用锁和lockfree是不相关的,用了锁也可能是lockfree,而不用锁有可能不是lockfree。一个lockfree的解释是一个“锁无关”的程序能…

  • qq邮箱收到钓鱼邮件_emc邮件门事件该怎么回答

    qq邮箱收到钓鱼邮件_emc邮件门事件该怎么回答0x0背景福无双至、祸不单行。本来是风和日丽的天气,白帽子在工地认真搬砖然后被一些所谓的负(dou)责(bi)人怼了,心里感觉到很委屈。准备下班之际莫名其妙收到了一封QQ邮箱弹窗点开一看直觉就是"这货有毒"。0x1过程新学期课程表安排通知,感觉还是比较有针对性的,想一想自己前段时间加入一些考研群的,目测就是这些群里面的人吧。话不多说,就开启burpsuit看看通信过程。一访…

  • android高德地图中心点,高德地图中心点以及自定义infowindow[通俗易懂]

    android高德地图中心点,高德地图中心点以及自定义infowindow[通俗易懂]jdfw.gif基本效果图就是这个样子,录制这个软件不太好使,每次切换地点是点击确定变更的。接下来就看看地图上的功能是如何实现的:实现的方式编写自定义的infowindow一,书写布局样式(自定义随意写)android:layout_width=”match_parent”android:layout_height=”match_parent”android:background=”@drawab…

  • pycharm2.5 永久激活码破解方法

    pycharm2.5 永久激活码破解方法,https://javaforall.cn/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

  • 软阈值(Soft Thresholding)函数解读「建议收藏」

    软阈值(Soft Thresholding)函数解读「建议收藏」题目:软阈值(SoftThresholding)函数解读1、软阈值(SoftThresholding)函数的符号    软阈值(SoftThresholding)目前非常常见,文献【1】【2】最早提出了这个概念。软阈值公式的表达方式归纳起来常见的有三种,以下是各文献中的软阈值定义符号:文献【1】式(12):文献【2】:文献【3】:文献【4】

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号