大家好,又见面了,我是你们的朋友全栈君。
ROC曲线标识了为了达到某个TPR(识别率),伴随而来的该分类器的FPR(误判率)是多少,体现了这两者的关系。
与ROC曲线类似的还有一个上升图,表示为了达到相应的识别率,需要投入的成本是多少(这个成本可以是样本数量)。
ROC 曲线的横坐标表示 一个负的实例被当作正实例的概率(FPR),纵坐标表示一个正的实例被当作正的实例的概率(TPR)。
当把所有的实例都分类成正的以后,TPR为100%,FPR也是100%,这解释了为什么ROC曲线必然过点(100%,100%)。
同理,如果把所有的实例都判为负类,那么,TPR为0,FPR也为0,所以曲线过原点。
ROC曲线的生成:可以通过将实例依照 肯定的(Positive)的概率从大到小排序,然后挨个分类,根据分类结果和真实结果从原点出发调整ROC曲线的前进方向完成绘制。
详见:http://www.doc88.com/p-808981321529.html
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/145617.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...