求最大公约数和最小公倍数的算法[通俗易懂]

求最大公约数和最小公倍数的算法[通俗易懂]在刷题的过程中,经常会遇到很多关于最小公倍数和最大公约数的问题。以下是用C语言写的求最大公约数和最小公倍数的算法。最大公约数。求最大公约数有三种算法。1、辗转相除法。   辗转相除法又称为欧几里德算法。这个方法大家已经都已经在数学上学过了。具体的步骤就是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是…

大家好,又见面了,我是你们的朋友全栈君。

在刷题的过程中,经常会遇到很多关于最小公倍数和最大公约数的问题。

以下是用C语言写的求最大公约数和最小公倍数的算法。

最大公约数。

求最大公约数有三种算法。

1、辗转相除法。

      辗转相除法又称为欧几里德算法。这个方法大家已经都已经在数学上学过了。具体的步骤就是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。最后的除数就是这两个数的最大公约数。举个例子就是:比如两个数字,x=453,y=36;

453%36=21;

36%21=15;

21%15=6;

15%6=3;

6%3=0;

%是取余符号,大家应该都知道吧。所以用这个算法可以求出453和36的最大公约数是3;

用C语言实现这个算法就是。

#include <stdio.h> 
int main()
{
	int a,b,c;
	scanf("%d%d",&a,&b);
	while(b)
	{
		c=a%b;
		a=b;
		b=c;
	}
	printf("%d\n",a);
	return 0;
}

或者是

#include <stdio.h> 
int gcd(int a,int b)
{
	return b?gcd(b,a%b):a;
}
int main()
{
	int a,b,c;
	while(scanf("%d%d",&a,&b)!=EOF)
	{
		c=gcd(a,b);
		printf("%d\n",c);
	}
	return 0;
}

2、更相减损法

       更相减损法是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。又名“更相减损术”,辗转相减法,等值算法,尼考曼彻斯法

比如说还是453和36;

453-36=417;

417-36=381;

381-363=345

.。。。。。。

9-6=3

6-3=3

3-3=0

然后3就是这两个数的最大公约数。

#include <stdio.h> 
int main()
{
	int a,b;
	while(scanf("%d%d",&a,&b)!=EOF)
	{
		while(a!=b)
		{
			if(a>b)
				a=a-b;
			else
				b=b-a;
			
		}
		printf("%d\n",a);
	}
	return 0;
}

 

3、穷举法

从1开始循环,一直循环到两个数中小的那个数。

#include <stdio.h> 
int main()
{
	int a,b,c;
	while(scanf("%d%d",&a,&b)!=EOF)
	{
		int max=1;       //记录最大公约数 
		c=a>b?b:a;      //c等于a和b中小的数 
		for(int i=1;i<=c;i++)
		{
			if(a%i==0&&b%i==0)
			{
				if(i>max)
					max=i;
			}
		}
		printf("%d\n",max);
	}
	return 0;
}

最小公倍数

求最小公倍数相对来说就比较简单了。只需要先求出最大公约数。用两个数的乘积除以最大公约数即可。

例如x和y的最小公倍数为x*y/gcd(x,y)。(gcd(x,y)表示为两个数的最大公约数)

#include <stdio.h> 
int gcd(int a,int b)
{
	return b?gcd(b,a%b):a;
}
int main()
{
	int a,b,c;
	while(scanf("%d%d",&a,&b)!=EOF)
	{
		c=a*b/gcd(a,b);
		printf("%d\n",c);
	}
	return 0;
}

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/145244.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 编写测试用例的思路_测试用例的内容

    编写测试用例的思路_测试用例的内容前言用过pytest的小伙伴都知道,pytest的运行方式是非常丰富的,可以说是你想怎么运行怎么运行,想运行哪些运行哪些,那httprunner是否同样可以呢?运行用例的各种方式运行指定路径的用

  • 电脑蓝屏错误代码0x000000ED_电脑蓝屏0*000000ed怎么解决

    电脑蓝屏错误代码0x000000ED_电脑蓝屏0*000000ed怎么解决电脑蓝屏的原因很多,不同的电脑蓝屏显示的代码不同,对应的解决方法也不同。最近就有网友说自己的电脑蓝屏代码0x000000ed怎么办,不知道0x000000ed是什么意思。今天小编就教下大家修复电脑蓝屏代码0x000000ed的解决方法。0x000000ed蓝屏原因:说明I/0子系统试图加载到引导卷时失败。一般因为不正常断电导致的硬盘故障,从而导致启动时不能正常加载。具体的解决方法如下:1、先开机按f8看能否进入安全模式,能够进入的话,打开运行/输入CMD,键入命令chkdsk/f/r回…

  • Simhash_hartwig

    Simhash_hartwig先贴一张网上的图片:解释一下图片:这里feature可以指一篇文档分词后的某个词,即将文档中的某个词作为一个特征。weight是这个词的权重,这里可以是这个词在这个句子中出现的次数。这里的hash算法就是传统的hash算法,通过调用一个hash函数实现的。simhash是为了计算一篇文档之间的相似度存在的,通过simhash算法可以计算出文档的simhash值,通过各个文档计算出的…

  • PyCharm激活码永久有效PyCharm2020.3.5激活码教程-持续更新,一步到位[通俗易懂]

    PyCharm激活码永久有效PyCharm2020.3.5激活码教程-持续更新,一步到位[通俗易懂]PyCharm激活码永久有效2020.3.5激活码教程-Windows版永久激活-持续更新,Idea激活码2020.3.5成功激活

  • django urls_关于URL的作用

    django urls_关于URL的作用前言为什么我们url需要命名呢?url命名的作用是什么?我们先来看一个案例案例我们先在一个Django项目中,创建2个App,前台front和后台cms,然后在各自app下创建urls.py文件

  • mongodb集群搭建步骤

    mongodb集群搭建步骤

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号