Hmily:高性能异步分布式事务TCC框架「建议收藏」

Hmily:高性能异步分布式事务TCC框架「建议收藏」作者:xiaoyu  来源:分布式事务技术研究Hmily框架特性[https://github.com/yu199195/hmily]无缝集成Spring,Spring…

大家好,又见面了,我是你们的朋友全栈君。

作者:xiaoyu  

来源:分布式事务技术研究


Hmily框架特性

[https://github.com/yu199195/hmily]


  • 无缝集成Spring,Spring boot start。

  • 无缝集成Dubbo,SpringCloud,Motan等rpc框架。

  • 多种事务日志的存储方式(redis,mongdb,mysql等)。

  • 多种不同日志序列化方式(Kryo,protostuff,hession)。

  • 事务自动恢复。

  • 支持内嵌事务的依赖传递。

  • 代码零侵入,配置简单灵活。


Hmily为什么这么高性能?


1.采用disruptor进行事务日志的异步读写(disruptor是一个无锁,无GC的并发编程框架)


package com.hmily.tcc.core.disruptor.publisher;

import com.hmily.tcc.common.bean.entity.TccTransaction;
import com.hmily.tcc.common.enums.EventTypeEnum;
import com.hmily.tcc.core.concurrent.threadpool.HmilyThreadFactory;
import com.hmily.tcc.core.coordinator.CoordinatorService;
import com.hmily.tcc.core.disruptor.event.HmilyTransactionEvent;
import com.hmily.tcc.core.disruptor.factory.HmilyTransactionEventFactory;
import com.hmily.tcc.core.disruptor.handler.HmilyConsumerDataHandler;
import com.hmily.tcc.core.disruptor.translator.HmilyTransactionEventTranslator;
import com.lmax.disruptor.BlockingWaitStrategy;
import com.lmax.disruptor.IgnoreExceptionHandler;
import com.lmax.disruptor.RingBuffer;
import com.lmax.disruptor.dsl.Disruptor;
import com.lmax.disruptor.dsl.ProducerType;
import org.springframework.beans.factory.DisposableBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

import java.util.concurrent.Executor;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * event publisher.
 *
 * @author xiaoyu(Myth)
 */

@Component
public class HmilyTransactionEventPublisher implements DisposableBean {

    private Disruptor<HmilyTransactionEvent> disruptor;

    private final CoordinatorService coordinatorService;

    @Autowired
    public HmilyTransactionEventPublisher(final CoordinatorService coordinatorService) {
        this.coordinatorService = coordinatorService;
    }

    /**
     * disruptor start.
     *
     * @param bufferSize this is disruptor buffer size.
     * @param threadSize this is disruptor consumer thread size.
     */

    public void start(final int bufferSize, final int threadSize) {
        disruptor = new Disruptor<>(new HmilyTransactionEventFactory(), bufferSize, r -> {
            AtomicInteger index = new AtomicInteger(1);
            return new Thread(null, r, "disruptor-thread-" + index.getAndIncrement());
        }, ProducerType.MULTI, new BlockingWaitStrategy());

        final Executor executor = new ThreadPoolExecutor(threadSize, threadSize, 0, TimeUnit.MILLISECONDS,
                new LinkedBlockingQueue<>(),
                HmilyThreadFactory.create("hmily-log-disruptor"false),
                new ThreadPoolExecutor.AbortPolicy());

        HmilyConsumerDataHandler[] consumers = new HmilyConsumerDataHandler[threadSize];
        for (int i = 0; i < threadSize; i++) {
            consumers[i] = new HmilyConsumerDataHandler(executor, coordinatorService);
        }
        disruptor.handleEventsWithWorkerPool(consumers);
        disruptor.setDefaultExceptionHandler(new IgnoreExceptionHandler());
        disruptor.start();
    }

    /**
     * publish disruptor event.
     *
     * @param tccTransaction { @linkplain com.hmily.tcc.common.bean.entity.TccTransaction }
     * @param type           { @linkplain EventTypeEnum}
     */

    public void publishEvent(final TccTransaction tccTransaction, final int type) {
        final RingBuffer<HmilyTransactionEvent> ringBuffer = disruptor.getRingBuffer();
        ringBuffer.publishEvent(new HmilyTransactionEventTranslator(type), tccTransaction);
    }

    @Override
    public void destroy() {
        disruptor.shutdown();
    }
}


在这里bufferSize 的默认值是4094 * 4,用户可以根据自行的情况进行配置。


   HmilyConsumerDataHandler[] consumers = new HmilyConsumerDataHandler[threadSize];
        for (int i = 0; i < threadSize; i++) {
            consumers[i] = new HmilyConsumerDataHandler(executor, coordinatorService);
        }
        disruptor.handleEventsWithWorkerPool(consumers);


这里是采用多个消费者去处理队列里面的任务。


2.异步执行confrim,cancel方法。


package com.hmily.tcc.core.service.handler;

import com.hmily.tcc.common.bean.context.TccTransactionContext;
import com.hmily.tcc.common.bean.entity.TccTransaction;
import com.hmily.tcc.common.enums.TccActionEnum;
import com.hmily.tcc.core.concurrent.threadpool.HmilyThreadFactory;
import com.hmily.tcc.core.service.HmilyTransactionHandler;
import com.hmily.tcc.core.service.executor.HmilyTransactionExecutor;
import org.aspectj.lang.ProceedingJoinPoint;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

import java.util.concurrent.Executor;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

/**
 * this is transaction starter.
 *
 * @author xiaoyu
 */

@Component
public class StarterHmilyTransactionHandler implements HmilyTransactionHandler {

    private static final int MAX_THREAD = Runtime.getRuntime().availableProcessors() << 1;

    private final HmilyTransactionExecutor hmilyTransactionExecutor;

    private final Executor executor = new ThreadPoolExecutor(MAX_THREAD, MAX_THREAD, 0, TimeUnit.MILLISECONDS,
            new LinkedBlockingQueue<>(),
            HmilyThreadFactory.create("hmily-execute"false),
            new ThreadPoolExecutor.AbortPolicy());

    @Autowired
    public StarterHmilyTransactionHandler(final HmilyTransactionExecutor hmilyTransactionExecutor) {
        this.hmilyTransactionExecutor = hmilyTransactionExecutor;
    }

    @Override
    public Object handler(final ProceedingJoinPoint point, final TccTransactionContext context)
            throws Throwable 
{
        Object returnValue;
        try {
            TccTransaction tccTransaction = hmilyTransactionExecutor.begin(point);
            try {
                //execute try
                returnValue = point.proceed();
                tccTransaction.setStatus(TccActionEnum.TRYING.getCode());
                hmilyTransactionExecutor.updateStatus(tccTransaction);
            } catch (Throwable throwable) {
                //if exception ,execute cancel
                final TccTransaction currentTransaction = hmilyTransactionExecutor.getCurrentTransaction();
                executor.execute(() -> hmilyTransactionExecutor
                        .cancel(currentTransaction));
                throw throwable;
            }
            //execute confirm
            final TccTransaction currentTransaction = hmilyTransactionExecutor.getCurrentTransaction();
            executor.execute(() -> hmilyTransactionExecutor.confirm(currentTransaction));
        } finally {
            hmilyTransactionExecutor.remove();
        }
        return returnValue;
    }
}


当try方法的AOP切面有异常的时候,采用线程池异步去执行cancel,无异常的时候去执行confrim方法。


这里有人可能会问:那么cancel方法异常,或者confrim方法异常怎么办呢?

答:首先这种情况是非常罕见的,因为你上一面才刚刚执行完try。其次如果出现这种情况,在try阶段会保存好日志,Hmily有内置的调度线程池来进行恢复,不用担心。


有人又会问:这里如果日志保存异常了怎么办?


答:首先这又是一个牛角尖问题,首先日志配置的参数,在框架启动的时候,会要求你配置的。其次,就算在运行过程中日志保存异常,这时候框架会取缓存中的,并不会影响程序正确执行。最后,万一日志保存异常了,系统又在很极端的情况下down机了,恭喜你,你可以去买彩票了,最好的解决办法就是不去解决它。


3.ThreadLocal缓存的使用。


  /**
     * transaction begin.
     *
     * @param point cut point.
     * @return TccTransaction
     */

    public TccTransaction begin(final ProceedingJoinPoint point) {
        LogUtil.debug(LOGGER, () -> "......hmily transaction!start....");
        //build tccTransaction
        final TccTransaction tccTransaction = buildTccTransaction(point, TccRoleEnum.START.getCode(), null);
        //save tccTransaction in threadLocal
        CURRENT.set(tccTransaction);
        //publishEvent
        hmilyTransactionEventPublisher.publishEvent(tccTransaction, EventTypeEnum.SAVE.getCode());
        //set TccTransactionContext this context transfer remote
        TccTransactionContext context = new TccTransactionContext();
        //set action is try
        context.setAction(TccActionEnum.TRYING.getCode());
        context.setTransId(tccTransaction.getTransId());
        context.setRole(TccRoleEnum.START.getCode());
        TransactionContextLocal.getInstance().set(context);
        return tccTransaction;
    }


首先要理解,threadLocal保存的发起者一方法的事务信息。这个很重要,不要会有点懵逼。rpc的调用,会形成调用链,进行保存。


 /**
     * add participant.
     *
     * @param participant { @linkplain Participant}
     */

    public void enlistParticipant(final Participant participant) {
        if (Objects.isNull(participant)) {
            return;
        }
        Optional.ofNullable(getCurrentTransaction())
                .ifPresent(c -> {
                    c.registerParticipant(participant);
                    updateParticipant(c);
                });
    }

4.GuavaCache的使用


package com.hmily.tcc.core.cache;

import com.google.common.cache.CacheBuilder;
import com.google.common.cache.CacheLoader;
import com.google.common.cache.LoadingCache;
import com.google.common.cache.Weigher;
import com.hmily.tcc.common.bean.entity.TccTransaction;
import com.hmily.tcc.core.coordinator.CoordinatorService;
import com.hmily.tcc.core.helper.SpringBeanUtils;
import org.apache.commons.lang3.StringUtils;

import java.util.Optional;
import java.util.concurrent.ExecutionException;

/**
 * use google guava cache.
 * @author xiaoyu
 */

public final class TccTransactionCacheManager {

    private static final int MAX_COUNT = 10000;

    private static final LoadingCache<String, TccTransaction> LOADING_CACHE =
            CacheBuilder.newBuilder().maximumWeight(MAX_COUNT)
                    .weigher((Weigher<String, TccTransaction>) (string, tccTransaction) -> getSize())
                    .build(new CacheLoader<String, TccTransaction>() {
                        @Override
                        public TccTransaction load(final String key) {
                            return cacheTccTransaction(key);
                        }
                    });

    private static CoordinatorService coordinatorService = SpringBeanUtils.getInstance().getBean(CoordinatorService.class);

    private static final TccTransactionCacheManager TCC_TRANSACTION_CACHE_MANAGER = new TccTransactionCacheManager();

    private TccTransactionCacheManager() {

    }

    /**
     * TccTransactionCacheManager.
     *
     * @return TccTransactionCacheManager
     */

    public static TccTransactionCacheManager getInstance() {
        return TCC_TRANSACTION_CACHE_MANAGER;
    }

    private static int getSize() {
        return (int) LOADING_CACHE.size();
    }

    private static TccTransaction cacheTccTransaction(final String key) {
        return Optional.ofNullable(coordinatorService.findByTransId(key)).orElse(new TccTransaction());
    }

    /**
     * cache tccTransaction.
     *
     * @param tccTransaction { @linkplain TccTransaction}
     */

    public void cacheTccTransaction(final TccTransaction tccTransaction) {
        LOADING_CACHE.put(tccTransaction.getTransId(), tccTransaction);
    }

    /**
     * acquire TccTransaction.
     *
     * @param key this guava key.
     * @return { @linkplain TccTransaction}
     */

    public TccTransaction getTccTransaction(final String key) {
        try {
            return LOADING_CACHE.get(key);
        } catch (ExecutionException e) {
            return new TccTransaction();
        }
    }

    /**
     * remove guava cache by key.
     * @param key guava cache key.
     */

    public void removeByKey(final String key) {
        if (StringUtils.isNotEmpty(key)) {
            LOADING_CACHE.invalidate(key);
        }
    }

}


在参与者中,我们使用了ThreadLocal,而在参与者中,我们为什么不使用呢?


其实原因有二点:首先.因为try,和confrim 会不在一个线程里,会造成ThreadLocal失效。当考虑到RPC集群的时候,可能会负载到不同的机器上。


这里有一个细节就是:

   private static TccTransaction cacheTccTransaction(final String key) {
   
   
        return Optional.ofNullable(coordinatorService.findByTransId(key)).orElse(new TccTransaction());
    }


当GuavaCache里面没有的时候,会去查询日志返回,这样就保证了对集群环境的支持。


以上4点造就了Hmily是一个异步的高性能分布式事务TCC框架的原因。


Hmily如何使用?

(https://github.com/yu199195/hmily/tree/master/hmily-tcc-demo)


首先因为之前的包命名问题,框架包并没有上传到maven中心仓库,固需要使用者自己拉取代码,编译deploy到自己的私服。


1.dubbo用户

  • 在你的Api接口项目引入

  <dependency>
          <groupId>com.hmily.tcc</groupId>
          <artifactId>hmily-tcc-annotation</artifactId>
          <version>{you version}</version>
      </dependency>


  • 在你的服务提供者项目引入

 <dependency>
            <groupId>com.hmily.tcc</groupId>
            <artifactId>hmily-tcc-dubbo</artifactId>
            <version>{you version}</version>
        </dependency>


  • 配置启动bean

<!-- Aspect 切面配置,是否开启AOP切面-->
  <aop:aspectj-autoproxy expose-proxy="true"/>
  <!--扫描框架的包-->
  <context:component-scan base-package="com.hmily.tcc.*"/>
  <!--启动类属性配置-->
   <bean id="hmilyTransactionBootstrap" class="com.hmily.tcc.core.bootstrap.HmilyTransactionBootstrap">
        <property name="serializer" value="kryo"/>
        <property name="recoverDelayTime" value="120"/>
        <property name="retryMax" value="3"/>
        <property name="scheduledDelay" value="120"/>
        <property name="scheduledThreadMax" value="4"/>
        <property name="repositorySupport" value="db"/>
        <property name="tccDbConfig">
            <bean class="com.hmily.tcc.common.config.TccDbConfig">
                <property name="url"
                          value="jdbc:mysql://192.168.1.98:3306/tcc?useUnicode=true&amp;characterEncoding=utf8"/>

                <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
                <property name="username" value="root"/>
                <property name="password" value="123456"/>
            </bean>
        </property>
    </bean>


当然配置属性很多,这里我只给出了demo,具体可以参考这个类:

package com.hmily.tcc.common.config;

import com.hmily.tcc.common.enums.RepositorySupportEnum;
import lombok.Data;

/**
 * hmily config.
 *
 * @author xiaoyu
 */

@Data
public class TccConfig {


    /**
     * Resource suffix this parameter please fill in about is the transaction store path.
     * If it's a table store this is a table suffix, it's stored the same way.
     * If this parameter is not filled in, the applicationName of the application is retrieved by default
     */

    private String repositorySuffix;

    /**
     * log serializer.
     * {@linkplain com.hmily.tcc.common.enums.SerializeEnum}
     */

    private String serializer = "kryo";

    /**
     * scheduledPool Thread size.
     */

    private int scheduledThreadMax = Runtime.getRuntime().availableProcessors() << 1;

    /**
     * scheduledPool scheduledDelay unit SECONDS.
     */

    private int scheduledDelay = 60;

    /**
     * retry max.
     */

    private int retryMax = 3;

    /**
     * recoverDelayTime Unit seconds
     * (note that this time represents how many seconds after the local transaction was created before execution).
     */

    private int recoverDelayTime = 60;

    /**
     * Parameters when participants perform their own recovery.
     * 1.such as RPC calls time out
     * 2.such as the starter down machine
     */

    private int loadFactor = 2;

    /**
     * repositorySupport.
     * {@linkplain RepositorySupportEnum}
     */

    private String repositorySupport = "db";

    /**
     * disruptor bufferSize.
     */

    private int bufferSize = 4096 * 2 * 2;

    /**
     * this is disruptor consumerThreads.
     */

    private int consumerThreads = Runtime.getRuntime().availableProcessors() << 1;

    /**
     * db config.
     */

    private TccDbConfig tccDbConfig;

    /**
     * mongo config.
     */

    private TccMongoConfig tccMongoConfig;

    /**
     * redis config.
     */

    private TccRedisConfig tccRedisConfig;

    /**
     * zookeeper config.
     */

    private TccZookeeperConfig tccZookeeperConfig;

    /**
     * file config.
     */

    private TccFileConfig tccFileConfig;

}

2.SpringCloud用户


  • 需要引入

     <dependency>
          <groupId>com.hmily.tcc</groupId>
          <artifactId>hmily-tcc-springcloud</artifactId>
          <version>{you version}</version>
      </dependency>
  • 配置启动bean 如上。


3.Motan用户


  • 需要引入

     <dependency>
          <groupId>com.hmily.tcc</groupId>
          <artifactId>hmily-tcc-motan</artifactId>
          <version>{you version}</version>
      </dependency>


  • 配置启动bean 如上。


hmily-spring-boot-start


  • 那这个就更容易了,只需要根据你的RPC框架去引入不同的jar包。

  • 如果你是dubbo用户,那么引入

<dependency>
     <groupId>com.hmily.tcc</groupId>
     <artifactId>hmily-tcc-spring-boot-starter-dubbo</artifactId>
     <version>${your version}</version>
 </dependency>
  • 如果你是SpringCloud用户,那么引入

<dependency>
     <groupId>com.hmily.tcc</groupId>
     <artifactId>hmily-tcc-spring-boot-starter-springcloud</artifactId>
     <version>${your version}</version>
 </dependency>
  • 如果你是Motan用户,那么引入

<dependency>
     <groupId>com.hmily.tcc</groupId>
     <artifactId>hmily-tcc-spring-boot-starter-motan</artifactId>
     <version>${your version}</version>
 </dependency>
  • 然后在你的yml里面进行如下配置:

hmily:
    tcc :
        serializer : kryo
        recoverDelayTime : 128
        retryMax : 3
        scheduledDelay : 128
        scheduledThreadMax :  10
        repositorySupport : db
        tccDbConfig :
                 driverClassName  : com.mysql.jdbc.Driver
                 url :  jdbc:mysql://192.168.1.98:3306/tcc?useUnicode=true&amp;characterEncoding=utf8
                 username : root
                 password : 123456

        #repositorySupport : redis
        #tccRedisConfig:
                 #masterName: mymaster
                 #sentinel : true
                 #sentinelUrl : 192.168.1.91:26379;192.168.1.92:26379;192.168.1.93:26379
                 #password  : foobaredbbexONE123


       # repositorySupport : zookeeper
       #         host      : 92.168.1.73:2181
       #         sessionTimeOut      :  100000
       #         rootPath  : /tcc

       # repositorySupport : mongodb
       #       mongoDbUrl  : 192.168.1.68:27017
       #       mongoDbName  :  happylife
       #       mongoUserName  : xiaoyu
       #       mongoUserPwd   : 123456

       # repositorySupport : file
       #         path      : /account
       #         prefix    :  account


就这么简单,然后就可以在接口方法上加上@Tcc注解,进行愉快的使用了。

当然因为篇幅问题,很多东西只是简单的描述,尤其是逻辑方面的。


如果你感兴趣,可以在github上进行star和fork,也可以加微信和QQ群进行交流。


下面是github地址:https://github.com/yu199195/hmily
最后再次感谢大家,如果有兴趣的朋友,可以提供你的优秀牛逼轰轰的PR。

-END-

 近期热文:

关注我

640?wx_fmt=jpeg

点击“阅读原文”,看本号其他精彩内容

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/143449.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • ipfs是什么项目?filecoin怎么挖矿(filecoin的矿机有哪几家)

    如果考虑成为一个Filecoin矿工,首要需要清楚的是,挖矿收益主要来自三方面:区块打包奖励、数据存储收益、检索收益。1.区块奖励Filecoin网络拥有独特的经济设计,它可以使参与者之间的奖励保持一致,并奖励Filecoin矿工的有效工作。Filecoin经济的一个关键组成部分是区块奖励,这是对存储矿工的补贴,以提供可靠和有用的存储容量并维护Filecoin区块链。大多数区块链使用加密货币令牌奖励生产区块的矿工,以成功挖掘链中的新区块。Filecoin在这方面没有什么不同。Filecoin区块链通过连

  • Win10 如何配置JDK环境变量

    Win10 如何配置JDK环境变量Win10配置JDK环境

  • AFN上传数组

    AFN上传数组

  • ssl数字证书是什么意思_数字证书的内容是

    ssl数字证书是什么意思_数字证书的内容是本文转自 http://seanlook.com/2015/01/15/openssl-certificate-encryption/SSL/TLS介绍见文章 SSL/TLS原理详解。如果你想快速自建CA然后签发数字证书,请移步 基于OpenSSL自建CA和颁发SSL证书 。首先简单区分一下HTTPS、SSL、OpenSSL三者的关系:SSL是在客户端和服务器之间建立

  • 谷歌浏览器搜索使用指南[通俗易懂]

    谷歌浏览器搜索使用指南[通俗易懂]谷歌浏览器使用指南下载谷歌浏览器使用浏览器时遇到的问题对谷歌浏览器进行配置下载谷歌浏览器可以在谷歌浏览器官网进行下载,网址:https://www.google.cn/intl/zh-CN/chrome/在腾讯电脑管家,进行下载使用浏览器时遇到的问题搜索引擎我们这里先选用百度搜索引擎,如果想使用其他搜索引擎,更换其他的网址即可。1.当你使用谷歌浏览器时你会发现,根本上不了网2.这个时候你不要惊慌,自己在网址框中手动输入:https://www.baidu.com/即可进行上网对谷

  • 关于vueThink框架打包发布的一些问题

    关于vueThink框架打包发布的一些问题

    2021年10月11日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号