Prometheus+Grafana+altermanager监控k8s并配置报警[通俗易懂]

Prometheus+Grafana+altermanager监控k8s并配置报警[通俗易懂]prometheus+grafana搭建、配置监控k8s集群,并结合altermanager将报警信息发送到邮箱等媒介

大家好,又见面了,我是你们的朋友全栈君。

Prometheus概述

在这里插入图片描述

基础概念

数据模型:prometheus将所有数据存储为时间序列:属于相同 metric名称和相同标签组(键值对)的时间戳值流。

metric 和 标签:每一个时间序列都是由其 metric名称和一组标签(键值对)组成唯一标识,标签给prometheus建立了多维度数据模型。

实例与任务:在prometheus中,一个可以拉取数据的端点叫做实例(instance),一般等同于一个进程。一组有着同样目标的实例(例如为弹性或可用性而复制的进程副本)叫做任务(job)。

组件架构

在这里插入图片描述

  • prometheus server
    Retrieval 负责在活跃的 target 主机上抓取监控指标数据。
    Storage 存储主要是把采集到的数据存储到磁盘中。
    PromQL 是 Prometheus 提供的查询语言模块。

  • Exporters
    prometheus 支持多种 exporter,通过 exporter 可以采集 metrics 数据,然后发送到prometheus server 端,所有向 promtheus server 提供监控数据的程序都可以被称为 exporter。

  • Client Library
    客户端库,检测应用程序代码,当 Prometheus 抓取实例的 HTTP 端点时,客户端库会将所有跟踪的 metrics 指标的当前状态发送到 prometheus server 端。# Prometheus+Grafana搭建

  • Alertmanager
    从 Prometheus server 端接收到 alerts 后,会进行去重,分组,并路由到相应的接收方,发出报警,常见的接收方式有:电子邮件,微信,钉钉, slack 等。

  • Grafana
    监控仪表盘,可视化监控数据。

  • pushgateway
    各个目标主机可上报数据到 pushgatewy,然后 prometheus server 统一从 pushgateway 拉取数据。

部署prometheus+grafana监控k8s集群

基于 1.23.1 版kubernetes,其他版本根据情况修改资源版本及配置

1. 安装node-exporter

kubectl create ns monitor-sa                                        # 创建名称空间
docker load -i node-exporter.tar.gz                                 # 导入镜像
cat node-exporter.yaml                                              # 编写yaml文件

通过daemonset部署可使每个节点都有一个Pod来采集数据,node-exporter.yaml 内容如下:

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: node-exporter
  namespace: monitor-sa
  labels:
    name: node-exporter
spec:
  selector:
    matchLabels:
      name: node-exporter
  template:
    metadata:
      labels:
        name: node-exporter
    spec:
      hostPID: true
      hostIPC: true
      hostNetwork: true                                             # 共享宿主机网络和进程
      containers:
      - name: node-exporter
        image: prom/node-exporter:v0.16.0
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 9100                                       # 容器暴露端口为9100
        resources:
          requests:
            cpu: 0.15
        securityContext:
          privileged: true                                          # 开启特权模式
        args:
        - --path.procfs
        - /host/proc
        - --path.sysfs
        - /host/sys
        - --collector.filesystem.ignored-mount-points
        - '"^/(sys|proc|dev|host|etc)($|/)"'
        volumeMounts:                                               # 挂载宿主机目录以收集宿主机信息
        - name: dev
          mountPath: /host/dev
        - name: proc
          mountPath: /host/proc
        - name: sys
          mountPath: /host/sys
        - name: rootfs
          mountPath: /rootfs
      tolerations:                                                  # 定义容忍度,使其可调度到默认有污点的master
      - key: "node-role.kubernetes.io/master"
        operator: "Exists"
        effect: "NoSchedule"
      volumes:                                                      # 定义存储卷
        - name: proc
          hostPath:
            path: /proc
        - name: dev
          hostPath:
            path: /dev
        - name: sys
          hostPath:
            path: /sys
        - name: rootfs
          hostPath:
            path: /
kubectl apply -f node-exporter.yaml                                 # 应用yaml文件
kubectl get pods -n monitor-sa                                      # 查看是否部署成功

在这里插入图片描述
检查node-exporter是否能正常采集到数据

curl http://主机 ip:9100/metrics |grep node_cpu_seconds

在这里插入图片描述
出现上面数据则node-exporter安装成功!

2. 安装Prometheus server服务

 kubectl create serviceaccount monitor -n monitor-sa                # 创建sa账号
 kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor       # sa账号授权
 mkdir /data                                                        # 在要安装prometheus server的节点创建数据目录
 chmod 777 /data                                                    # 目录授权

使用configmap配置prometheus,yaml文件如下:

 cat prometheus-cfg.yaml
kind: ConfigMap
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus-config
  namespace: monitor-sa
data:
  prometheus.yml: | global: # 全局配置 scrape_interval: 15s # 拉取数据频率 scrape_timeout: 10s # 拉取超时时间 evaluation_interval: 1m # 执行规则频率(这个值要大于拉取频率,否则会造成发生因一个故障而产生多次报警) scrape_configs: # 拉取配置(有静态配置和服务发现两种) - job_name: 'kubernetes-node' # 一个job为一个拉取任务 kubernetes_sd_configs: # k8s的服务发现 - role: node # 使用kubelet提供的http端口发现node relabel_configs: # 重新标记标签 - source_labels: [__address__] # 原始标签,匹配地址 regex: '(.*):10250' replacement: '${1}:9100' target_label: __address__ action: replace # 这段配置表示把匹配到的ip:10250替换为ip:9100 - action: labelmap regex: __meta_kubernetes_node_label_(.+) # 匹配到该表达式的标签会保留 - job_name: 'kubernetes-node-cadvisor' # 抓取 cAdvisor 数据,是获取 kubelet 上/metrics/cadvisor 接口数据来获取容器的资源使用情况 kubernetes_sd_configs: - role: node scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor - job_name: 'kubernetes-apiserver' kubernetes_sd_configs: - role: endpoints scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] action: keep regex: default;kubernetes;https - job_name: 'kubernetes-service-endpoints' kubernetes_sd_configs: - role: endpoints relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port] action: replace target_label: __address__ regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] action: replace target_label: kubernetes_name
 kubectl apply -f prometheus-cfg.yaml                               # 应用configmap

通过deployment部署prometheus,yaml文件如下(其中nodeName值替换为要安装prometheus server节点的主机名,与刚创建的/data目录在同一节点):

cat prometheus-deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: prometheus-server
  namespace: monitor-sa
  labels:
    app: prometheus
spec:
  replicas: 1
  selector:
    matchLabels:
      app: prometheus
      component: server
  template:
    metadata:
      labels:
        app: prometheus
        component: server
      annotations:
        prometheus.io/scrape: 'false'                             # 该容器不会被prometheus发现并监控,其他pod可通过添加该注解(值为true)以服务发现的方式自动被prometheus监控到。
    spec:
      nodeName: s2 
      serviceAccountName: monitor                                 # 指定sa,使容器有权限获取数据
      containers:
      - name: prometheus                                          # 容器名称
        image: prom/prometheus:v2.27.1                            # 镜像名称
        imagePullPolicy: IfNotPresent                             # 镜像拉取策略
        command:                                                  # 容器启动时执行的命令
          - prometheus
          - --config.file=/etc/prometheus/prometheus.yml
          - --storage.tsdb.path=/prometheus                       # 旧数据存储目录
          - --storage.tsdb.retention=720h                         # 旧数据保留时间
          - --web.enable-lifecycle                                # 开启热加载
        ports:                                                    # 容器暴露的端口
        - containerPort: 9090
          protocol: TCP                                           # 协议
        volumeMounts:                                             # 容器挂载的数据卷
        - mountPath: /etc/prometheus                              # 要挂载到哪里
          name: prometheus-config                                 # 挂载谁(与下面定义的volume对应)
        - mountPath: /prometheus/                              
          name: prometheus-storage-volume
      volumes:                                                    # 数据卷定义
        - name: prometheus-config                                 # 名称
          configMap:                                              # 从configmap获取数据
            name: prometheus-config                               # configmap的名称
        - name: prometheus-storage-volume
          hostPath:
            path: /data
            type: Directory
kubectl apply -f prometheus-deploy.yaml                            # 应用deployment
kubectl get pods -n monitor-sa                                     # 查看deployment是否部署成功

在这里插入图片描述
添加前端service,yaml文件如下:

cat prometheus-svc.yaml
apiVersion: v1
kind: Service
metadata:
  name: prometheus
  namespace: monitor-sa
  labels:
    app: prometheus
spec: 
  type: NodePort
  ports:
  - port: 9090
    targetPort: 9090
    protocol: TCP
  selector:
    app: prometheus
    component: server
 kubectl apply -f prometheus-svc.yaml                              # 应用service
 kubectl get svc -n monitor-sa                                     # 查看service在物理机映射的端口号

在这里插入图片描述
使用浏览器访问prometheus的web界面
http://主机ip:端口号/graph
在搜索栏输入内容点击Execute能够出来内容表示Prometheus server工作正常,如下图:
在这里插入图片描述

3. 安装Grafana

在要安装grafana的节点创建目录并授权

mkdir /var/lib/grafana/ -p
chmod 777 /var/lib/grafana/

使用deployment部署grafana,yaml文件如下(其中nodeName的值替换为要安装grafana节点的主机名,与刚创建的目录在同一节点):

cat grafana.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: monitoring-grafana
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      task: monitoring
      k8s-app: grafana
  template:
    metadata:
      labels:
        task: monitoring
        k8s-app: grafana
    spec:
      nodeName: s2                                                 # 要安装到哪个节点
      containers:
      - name: grafana
        image: grafana/grafana:7.5.7
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 3000
          protocol: TCP
        volumeMounts:
        - mountPath: /etc/ssl/certs
          name: ca-certificates
          readOnly: true
        - mountPath: /var
          name: grafana-storage
        - mountPath: /var/lib/grafana/
          name: lib
        env:
        - name: INFLUXDB_HOST
          value: monitoring-influxdb
        - name: GF_SERVER_HTTP_PORT
          value: "3000"
          # The following env variables are required to make Grafana accessible via
          # the kubernetes api-server proxy. On production clusters, we recommend
          # removing these env variables, setup auth for grafana, and expose the grafana
          # service using a LoadBalancer or a public IP.
        - name: GF_AUTH_BASIC_ENABLED
          value: "false"
        - name: GF_AUTH_ANONYMOUS_ENABLED
          value: "true"
        - name: GF_AUTH_ANONYMOUS_ORG_ROLE
          value: Admin
        - name: GF_SERVER_ROOT_URL
          # If you're only using the API Server proxy, set this value instead:
          # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
          value: /
      volumes:
      - name: ca-certificates
        hostPath:
          path: /etc/ssl/certs
      - name: grafana-storage
        emptyDir: { 
   }
      - name: lib
        hostPath:
         path: /var/lib/grafana/
         type: DirectoryOrCreate
---
apiVersion: v1
kind: Service
metadata:
  labels:
    # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
    # If you are NOT using this as an addon, you should comment out this line.
    kubernetes.io/cluster-service: 'true'
    kubernetes.io/name: monitoring-grafana
  name: monitoring-grafana
  namespace: kube-system
spec:
  # In a production setup, we recommend accessing Grafana through an external Loadbalancer
  # or through a public IP.
  # type: LoadBalancer
  # You could also use NodePort to expose the service at a randomly-generated port
  # type: NodePort
  ports:
  - port: 80
    targetPort: 3000
  selector:
    k8s-app: grafana
  type: NodePort
kubectl apply -f grafana.yaml                                      # 应用yaml文件
kubectl get pods -n kube-system| grep monitor                      # 查看pod工作状态(running)
kubectl get svc -n kube-system | grep grafana                      # 查看前端service

在这里插入图片描述
使用浏览器登录grafana
主机ip:服务端口

4. 配置Grafana展示prometheus收集到的信息

进入grafana页面后点击添加数据源
在这里插入图片描述
选择prometheus,进入配置界面,配置内容如下:
在这里插入图片描述
配置完成点击左下角 Save & Test,出现如下 Data source is working,说明 prometheus 数据源成功的被grafana接入了。

到如下链接下载模板:
https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes

下载完成后倒入模板,点击左侧 + 号,点击 import ,点击Upload json file,选择刚下载的模板,完成后选择数点击Import倒入即可出现监控数据:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 安装kube-state-metrics(监控k8s资源状态)

创建rbac授权,yaml文件如下:

cat kube-state-metrics-rbac.yaml
---
apiVersion: v1                                                     # api版本:v1
kind: ServiceAccount                                               # 资源类型:服务账号
metadata:                                                          # 元数据
  name: kube-state-metrics                                         # 名称
  namespace: kube-system                                           # 名称空间
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole                                                  # 资源类型:集群角色 
metadata:
  name: kube-state-metrics
rules:                                 
- apiGroups: [""]
  resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]
  verbs: ["list", "watch"]
- apiGroups: ["extensions"]
  resources: ["daemonsets", "deployments", "replicasets"]
  verbs: ["list", "watch"]
- apiGroups: ["apps"]
  resources: ["statefulsets"]
  verbs: ["list", "watch"]
- apiGroups: ["batch"]
  resources: ["cronjobs", "jobs"]
  verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
  resources: ["horizontalpodautoscalers"]
  verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: kube-state-metrics
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: kube-state-metrics
subjects:
- kind: ServiceAccount
  name: kube-state-metrics
  namespace: kube-system
kubectl apply -f kube-state-metrics-rbac.yaml                      # 应用yaml文件

使用deployment安装kube-state-metrics,yaml文件如下:

cat kube-state-metrics-deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kube-state-metrics
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kube-state-metrics
  template:
    metadata:
      labels:
        app: kube-state-metrics
    spec:
      serviceAccountName: kube-state-metrics
      containers:
      - name: kube-state-metrics
        image: quay.io/coreos/kube-state-metrics:v1.9.0
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 8080
kubectl apply -f kube-state-metrics-deploy.yaml                    # 应用yaml文件
kubectl get pods -n kube-system -l app=kube-state-metrics          # 查看是否部署成功

在这里插入图片描述
创建前端service,yaml文件如下:

cat kube-state-metrics-svc.yaml
apiVersion: v1
kind: Service
metadata:
  annotations:
    prometheus.io/scrape: 'true'
  name: kube-state-metrics
  namespace: kube-system
  labels:
    app: kube-state-metrics
spec:
  ports:
  - name: kube-state-metrics
    port: 8080
    protocol: TCP
  selector:
    app: kube-state-metrics
kubectl apply -f kube-state-metrics-svc.yaml 
kubectl get svc -n kube-system | grep kube-state-metrics           # 查看服务状态 

kube-state-metrics搭建完成,在grafana导入监控k8s集群状态模板即可查看相关数据。

部分模板下载链接:https://download.csdn.net/download/weixin_45826416/85018153

问题排查

node-exporter工作状态检查:curl http://主机 ip:9100/metrics
可能出现的问题:pod状态异常(镜像、节点资源、容忍度)、端口占用

prometheus server工作状态检查:在web界面输入关键字进行查询,看是否有结果返回。
可能出现的问题:sa账号授权、数据目录权限、pod状态、端口占用

grafana工作状态检查:导入模板后是否有数据展示
可能出现的问题:目录权限、数据源设置、时间同步、json模板

部署Altermanager发送报警

安装和配置altermanager发送报警到邮箱

1、邮箱授权密码获取

以163邮箱为例,登录自己的邮箱,点击上面“设置”→“POP3/SMTP/IMAP”
在这里插入图片描述

点击开启IMAP/SMTP服务,按照提示发送验证码,成功后会出现“授权密码”。保存好授权密码,下面配置报警会用到。
在这里插入图片描述

2、创建altermanager配置

通过configmap来管理altermanager的配置,altermanager-cm.yaml文件内容如下:

kind: ConfigMap
apiVersion: v1
metadata:
  name: alertmanager
  namespace: monitor-sa
data:
  alertmanager.yml: |-                               # altermanager配置文件
    global:                            
      resolve_timeout: 1m                            
      smtp_smarthost: 'smtp.163.com:25'              # 发送者的SMTP服务器
      smtp_from: '1814553****@163.com'               # 发送者的邮箱
      smtp_auth_username: '1814553****'              # 发送者的邮箱用户名(不是邮箱名)
      smtp_auth_password: 'LAYXLXRZGFUBWOMZ'         # 发送者授权密码(上面获取到的)
      smtp_require_tls: false
    route:                                           # 配置告警分发策略
      group_by: [alertname]                          # 采用哪个标签作为分组依据
      group_wait: 10s                                # 组告警等待时间(10s内的同组告警一起发送)
      group_interval: 10s                            # 两组告警的间隔时间
      repeat_interval: 10m                           # 重复告警的间隔时间
      receiver: default-receiver                     # 接收者配置
    receivers:
    - name: 'default-receiver'                       # 接收者名称(与上面对应)
      email_configs:                                 # 接收邮箱配置
      - to: '1639373787@qq.com'                      # 接收邮箱(填要接收告警的邮箱)
        send_resolved: true                          # 是否通知已解决的告警
kubectl apply -f altermanager-cm.yaml                # 应用配置

3、创建prometheus配置

通过configmap管理prometheus的配置,配置中关于k8s组件的静态配置里的Ip地址根据自身情况进行修改。由于配置文件过长,下面只选部分具有代表性的进行讲解,完整yaml请自行下载、调整。
文件下载地址:prometheus-alertmanager-cfg.yaml

kind: ConfigMap
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus-config
  namespace: monitor-sa
data:
  prometheus.yml: | rule_files: - /etc/prometheus/rules.yml # 指定报警规则配置文件 alerting: # 处理报警的媒介 alertmanagers: - static_configs: - targets: ["localhost:9093"] global: scrape_interval: 15s scrape_timeout: 10s evaluation_interval: 1m scrape_configs: - job_name: 'kubernetes-node' # 通过动态发现监控k8s node kubernetes_sd_configs: - role: node relabel_configs: # 标签重写配置 - source_labels: [__address__] regex: '(.*):10250' replacement: '${1}:9100' target_label: __address__ action: replace - action: labelmap regex: __meta_kubernetes_node_label_(.+) ... ...
  rules.yml: |                                     # 报警规则配置
    groups:                                        # 组
    - name: example                                # 组名
      rules:                                       # 规则定义
      - alert: kube-proxy的cpu使用率大于80%          # 报警项
        expr: rate(process_cpu_seconds_total{ 
   job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80   # 表达式(基于PromQL编写)
        for: 2s                                    # 满足表达式多久触发报警
        labels:
          severity: warnning                       # 报警等级
        annotations:                               # 报警时的提示信息
          description: "{ 
   {$labels.instance}}的{ 
   {$labels.job}}组件的cpu使用率超过80%"  
kubectl delete -f prometheus-cfg.yaml              # 删除原有配置
kubectl apply -f prometheus-alertmanager-cfg.yaml  # 应用刚创建的配置

4、部署prometheus和altermanager

先删除之前安装的prometheus,因为要把prometheus和altermanager封装到同一个pod里。

 kubectl delete -f prometheus-deploy.yaml

生成一个 etcd-certs,这个在部署 prometheus 需要。

kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt

通过deployment部署prometheus和altermanager,根据自身环境修改“nodeName”的值, prometheus-alertmanager-deploy.yaml文件内容如下:

---
apiVersion: apps/v1                                # api版本
kind: Deployment                                   # 资源类型
metadata:                                          # 元数据
  name: prometheus-server                          # deployment名称
  namespace: monitor-sa                            # 指定名称空间
  labels:
    app: prometheus                                # deployment具有的标签
spec:               
  replicas: 1                                      # 副本数
  selector:                            
    matchLabels:                                   # 选择具有如下标签的pod
      app: prometheus
      component: server
  template:                                        # pod模板
    metadata:     
      labels:                                      # pod标签,与上面匹配
        app: prometheus
        component: server
      annotations:                                 # pod的注解
        prometheus.io/scrape: 'false'              # 不被prometheus动态发现
    spec:
      nodeName: s2                                 # 指定调度到主机名为s2的节点(根据自身调整) 
      serviceAccountName: monitor                  # 指定sa
      containers:                                  # 容器列表
      - name: prometheus
        image: prom/prometheus:v2.2.1
        imagePullPolicy: IfNotPresent
        command:
        - "/bin/prometheus"
        args:
        - "--config.file=/etc/prometheus/prometheus.yml"
        - "--storage.tsdb.path=/prometheus"
        - "--storage.tsdb.retention=24h"
        - "--web.enable-lifecycle"
        ports:
        - containerPort: 9090
          protocol: TCP
        volumeMounts:
        - mountPath: /etc/prometheus
          name: prometheus-config
        - mountPath: /prometheus/
          name: prometheus-storage-volume
        - name: k8s-certs
          mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
      - name: alertmanager
        image: prom/alertmanager:v0.14.0
        imagePullPolicy: IfNotPresent
        args:
        - "--config.file=/etc/alertmanager/alertmanager.yml"
        - "--log.level=debug"
        ports:
        - containerPort: 9093
          protocol: TCP
          name: alertmanager
        volumeMounts:
        - name: alertmanager-config
          mountPath: /etc/alertmanager
        - name: alertmanager-storage
          mountPath: /alertmanager
        - name: localtime
          mountPath: /etc/localtime                # 挂载时间到容器(避免时序数据错乱)
      volumes:
        - name: prometheus-config
          configMap:
            name: prometheus-config
        - name: prometheus-storage-volume
          hostPath:
           path: /data
           type: Directory
        - name: k8s-certs
          secret:
           secretName: etcd-certs
        - name: alertmanager-config
          configMap:
            name: alertmanager
        - name: alertmanager-storage
          hostPath:
           path: /data/alertmanager
           type: DirectoryOrCreate
        - name: localtime
          hostPath:
           path: /usr/share/zoneinfo/Asia/Shanghai

创建pod

 kubectl apply -f prometheus-alertmanager-deploy.yaml  

查看prometheus是否部署成功,

kubectl get pods -n monitor-sa | grep prometheus

显示如下,可看到 pod 状态是 running,说明 prometheus 部署成功。
在这里插入图片描述

5、部署altermanger前端svc

apiVersion: v1
kind: Service
metadata:
  labels:
    name: prometheus
    kubernetes.io/cluster-service: 'true'
  name: alertmanager
  namespace: monitor-sa
spec:
  ports:
  - name: alertmanager
    nodePort: 30066
    port: 9093
    protocol: TCP
    targetPort: 9093
  selector:
    app: prometheus
  sessionAffinity: None
  type: NodePort
kubectl apply -f alertmanager-svc.yaml             # 应用
kubectl get svc -n monitor-sa                      # 查看svc

可以看到service 在物理机上映射的端口,可以通过 ip:port 进行访问。

6、故障处理

注意:以下操作在生产环境慎重执行,可能会导致集群故障

访问 prometheus 的 web 界面,点击 status->targets,可看到如下:
在这里插入图片描述
从上面可以发现 kubernetes-controller-manager 和 kubernetes-schedule 都显示连接不上对应的端口,可按如下方法处理:

vim /etc/kubernetes/manifests/kube-scheduler.yaml

修改如下内容:
把–bind-address=127.0.0.1 变成–bind-address=192.168.1.63
把 httpGet:字段下的 hosts 由 127.0.0.1 变成 192.168.1.63
把—port=0 删除

192.168.1.63是k8s的控制节点的ip

重启各节点的kubelet

systemctl restart kubelet

kube-proxy默认端口 10249 是监听在 127.0.0.1 上的,需要改成监听到物理节点上,按如下方法修改,线上建议在安装 k8s 的时候就做修改,这样风险小一些:

kubectl edit configmap kube-proxy -n kube-system

把 metricsBindAddress 这段修改成 metricsBindAddress: 0.0.0.0:10249
然后重新启动 kube-proxy 这个 pod

kubectl get pods -n kube-system | grep kube-proxy |awk '{print $1}' | xargs kubectl delete pods -n kube-system

配置altermanager发送报警到企业微信

1、注册企业微信

登陆网址:https://work.weixin.qq.com/ 注册企业微信。

2、创建应用

找到应用管理,创建应用,应用名字“wechat”。创建成功后显示如下:
在这里插入图片描述
记录 AgentIdSecret,一会配置时要用。

3、找到corp_id

点击“我的企业”,在最下方找到“企业ID”并记录,如下图:
在这里插入图片描述

4、修改报警配置

修改 alertmanager-cm.yaml中报警接收方配置

vim alertmanager-cm.yaml
kind: ConfigMap
apiVersion: v1
metadata:
  name: alertmanager
  namespace: monitor-sa
data:
  alertmanager.yml: |-                               # altermanager配置文件
    global:                            
      resolve_timeout: 1m                            
      smtp_smarthost: 'smtp.163.com:25'              # 发送者的SMTP服务器
      smtp_from: '1814553****@163.com'               # 发送者的邮箱
      smtp_auth_username: '1814553****'              # 发送者的邮箱用户名(不是邮箱名)
      smtp_auth_password: 'LAYXLXRZGFUBWOMZ'         # 发送者授权密码(上面获取到的)
      smtp_require_tls: false
    route:                                           # 配置告警分发策略
      group_by: [alertname]                          # 采用哪个标签作为分组依据
      group_wait: 10s                                # 组告警等待时间(10s内的同组告警一起发送)
      group_interval: 10s                            # 两组告警的间隔时间
      repeat_interval: 10m                           # 重复告警的间隔时间
      receiver: prometheus                           # 接收者配置
    receivers:
    - name: 'prometheus'                             # 接收者名称(与上面对应)
      wechat_configs:                                # 接收邮箱配置
      - corp_id: "wwa82df90a693*****"                # 企业信息
        to_user: '@all'                              # 发送报警到所有人
        agent_id: 1000002                            # 刚记录的AgnetId
        api_secret: "xPte8Jw6g1P****"                # 刚记录的Secret

5、使配置生效

修改 prometheus 任何一个配置文件之后,可通过 kubectl apply 使配置生效,执行顺序如下:

kubectl delete -f alertmanager-cm.yaml               # 删除原alter配置
kubectl apply -f altermanager-cm.yaml                # 使新配置生效
kubectl delete -f prometheus-alertmanager-cfg.yaml   # 删除原prometheus配置
kubectl apply -f prometheus-alertmanager-cfg.yaml    # 使新配置生效
kubectl delete-f prometheus-alertmanager-deploy.yaml # 删除原deployment 
kubectl apply –f prometheus-alertmanager-deploy.yaml # 创建新的deployment

配置altermanager发送报警到钉钉群

1、创建钉钉机器人

首先要有一个钉钉号,有一个钉钉群。
打开电脑版钉钉,在群中创建自定义机器人,可参考如下链接中的文档:
https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq
https://developers.dingtalk.com/document/app/custom-robot-access

我的创建步骤如下
群设置–>智能群助手–>添加机器人–>自定义–>添加

  • 机器人名称:test
  • 安全设置:自定义关键词:cluster1

查看机器人的webhook和token
找到刚创建的test机器人,点击就会进入到test机器人的设置界面,出现如下内容:

  • 机器人名称
  • 接收群组
  • 消息推送(要开启)
  • Webhook(复制下来,一会配置要用)
  • 安全设置关键词:cluster1(很关键)

2、安装钉钉的webhook插件

在k8s控制节点操作,插件下载地址:https://download.csdn.net/download/weixin_45826416/85309639

tar zxvf prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gz
cd prometheus-webhook-dingtalk-0.3.0.linux-amd64

启动钉钉报警插件

nohup ./prometheus-webhook-dingtalk --web.listen-address="0.0.0.0:8060" --ding.profile="cluster1=https://oapi.dingtalk.com/robot/send?access_token=******" &
# 其中cluster1为关键词,后面的为钉钉webhook(用自己刚复制的)

3、修改配置

备份原来的 altermanager-cm.yaml

cp alertmanager-cm.yaml alertmanager-cm.yaml.bak

修改 altermanager-cm.yaml ,修改后内容如下:

kind: ConfigMap
apiVersion: v1
metadata:
  name: altermanager
  namespace: monitor-sa
data:
  altermanager.yml: |-
    global:
      resolve_timeout: 1m                            
      smtp_smarthost: 'smtp.163.com:25'              # 发送者的SMTP服务器
      smtp_from: '1814553****@163.com'               # 发送者的邮箱
      smtp_auth_username: '1814553****'              # 发送者的邮箱用户名(不是邮箱名)
      smtp_auth_password: 'LAYXLXRZGFUBWOMZ'         # 发送者授权密码(上面获取到的)
      smtp_require_tls: false
    route:                                           # 配置告警分发策略
      group_by: [alertname]                          # 采用哪个标签作为分组依据
      group_wait: 10s                                # 组告警等待时间(10s内的同组告警一起发送)
      group_interval: 10s                            # 两组告警的间隔时间
      repeat_interval: 10m                           # 重复告警的间隔时间
      receiver: dingding                             # 接收者配置
    receivers:
    - name: 'dingding'                               # 与上面设置的接收者对应(不对应pod起不来)
      webhook_configs:
      - url: 'http://192.168.1.63:8060/dingtalk/cluster1/send'
        send_resolved: true                          # 问题解决是否发送

4、使配置生效

修改 prometheus 任何一个配置文件之后,可通过 kubectl apply 使配置生效,执行顺序如下:

kubectl delete -f alertmanager-cm.yaml               # 删除原alter配置
kubectl apply -f altermanager-cm.yaml                # 使新配置生效
kubectl delete -f prometheus-alertmanager-cfg.yaml   # 删除原prometheus配置
kubectl apply -f prometheus-alertmanager-cfg.yaml    # 使新配置生效
kubectl delete-f prometheus-alertmanager-deploy.yaml # 删除原deployment 
kubectl apply –f prometheus-alertmanager-deploy.yaml # 创建新的deployment
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/142830.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号