大家好,又见面了,我是你们的朋友全栈君。
转载自https://blog.csdn.net/zzc15806/article/details/79711114
Keras提供两种学习率适应方法,可通过回调函数实现。
1. LearningRateScheduler
keras.callbacks.LearningRateScheduler(schedule)
该回调函数是学习率调度器.
参数
schedule:函数,该函数以epoch号为参数(从0算起的整数),返回一个新学习率(浮点数)
代码
import keras.backend as K
from keras.callbacks import LearningRateScheduler
def scheduler(epoch):
# 每隔100个epoch,学习率减小为原来的1/10
if epoch % 100 == 0 and epoch != 0:
lr = K.get_value(model.optimizer.lr)
K.set_value(model.optimizer.lr, lr * 0.1)
print("lr changed to {}".format(lr * 0.1))
return K.get_value(model.optimizer.lr)
reduce_lr = LearningRateScheduler(scheduler)
model.fit(train_x, train_y, batch_size=32, epochs=5, callbacks=[reduce_lr])
2. ReduceLROnPlateau
keras.callbacks.ReduceLROnPlateau(monitor=’val_loss’, factor=0.1, patience=10, verbose=0, mode=’auto’, epsilon=0.0001, cooldown=0, min_lr=0)
当评价指标不在提升时,减少学习率
当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率
参数
monitor:被监测的量
factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
epsilon:阈值,用来确定是否进入检测值的“平原区”
cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
min_lr:学习率的下限
代码
from keras.callbacks import ReduceLROnPlateau
reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=10, mode='auto')
model.fit(train_x, train_y, batch_size=32, epochs=5, validation_split=0.1, callbacks=[reduce_lr])
———————
作者:z小白
来源:CSDN
原文:https://blog.csdn.net/zzc15806/article/details/79711114
版权声明:本文为博主原创文章,转载请附上博文链接!
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/142715.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...