较新颖的智能优化算法[通俗易懂]

较新颖的智能优化算法[通俗易懂]32个较新颖的智能优化算法序号方法参考文献年份1人群搜索算法Dai,C.,Y.Zhu,andW.Chen.Seekeroptimizationalgorithm.inInternationalConferenceonComputationalandInformationScience.2006.Springer.20062人工蜂群算法Karaboga,D.andB.J.J.o.g.o.Basturk,Apowerfu

大家好,又见面了,我是你们的朋友全栈君。

较新颖的智能优化算法

序号 方法 参考文献 年份
1 人群搜索算法 Dai, C., Y. Zhu, and W. Chen. Seeker optimization algorithm. in International Conference on Computational and Information Science. 2006. Springer. 2006
2 人工蜂群算法 Karaboga, D. and B.J.J.o.g.o. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. 2007. 39(3): p. 459-471. 2007
3 帝国竞争算法 Atashpaz-Gargari, E. and C. Lucas. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. in 2007 IEEE congress on evolutionary computation. 2007. Ieee. 2007
4 智能水滴算法 Hosseini, H.S. Problem solving by intelligent water drops. in 2007 IEEE congress on evolutionary computation. 2007. IEEE. 2007
5 生物地理优化算法 Simon, D.J.I.t.o.e.c., Biogeography-based optimization. 2008. 12(6): p. 702-713. 2008
6 萤火虫算法 Yang, X.-S. Firefly algorithms for multimodal optimization. in International symposium on stochastic algorithms. 2009. Springer. 2009
7 布谷鸟搜索算法 Yang, X.-S. and S. Deb. Cuckoo search via Lévy flights. in 2009 World congress on nature & biologically inspired computing (NaBIC). 2009. IEEE. 2009
8 引力搜索算法 Rashedi, E., H. Nezamabadi-Pour, and S.J.I.s. Saryazdi, GSA: a gravitational search algorithm. 2009. 179(13): p. 2232-2248. 2009
9 觅食搜索算法 Oftadeh, R., et al., A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. 2010. 60(7): p. 2087-2098. 2010
10 蝙蝠算法 Yang, X.-S., A new metaheuristic bat-inspired algorithm, in Nature inspired cooperative strategies for optimization (NICSO 2010). 2010, Springer. p. 65-74. 2010
11 风驱动优化算法 Bayraktar, Z., M. Komurcu, and D.H. Werner. Wind Driven Optimization (WDO): A novel nature-inspired optimization algorithm and its application to electromagnetics. in 2010 IEEE antennas and propagation society international symposium. 2010. IEEE. 2010
12 手榴弹爆炸算法 Ahrari, A. and A.A.J.A.S.C. Atai, Grenade explosion method—a novel tool for optimization of multimodal functions. 2010. 10(4): p. 1132-1140. 2010
13 头脑风暴优化算法 Shi, Y. Brain storm optimization algorithm. in International conference in swarm intelligence. 2011. Springer. 2011
14 基于教与学的优化算法 Rao, R.V., V.J. Savsani, and D.J.C.-A.D. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. 2011. 43(3): p. 303-315. 2011
15 花授粉算法 Yang, X.-S. Flower pollination algorithm for global optimization. in International conference on unconventional computing and natural computation. 2012. Springer. 2012
16 果蝇优化算法 Pan, W.-T.J.K.-B.S., A new fruit fly optimization algorithm: taking the financial distress model as an example. 2012. 26: p. 69-74. 2012
17 磷虾优化算法 Gandomi, A.H., A.H.J.C.i.n.s. Alavi, and n. simulation, Krill herd: a new bio-inspired optimization algorithm. 2012. 17(12): p. 4831-4845. 2012
18 狼群算法 吴虎胜, 张凤鸣, and 吴.J. 系统工程与电子技术, 一种新的群体智能算法——狼群算法. 2010. 35(11): p. 2430-2438. 2010
19 海豚回声定位算法 Kaveh, A. and N.J.A.i.E.S. Farhoudi, A new optimization method: Dolphin echolocation. 2013. 59: p. 53-70. 2013
20 鸽群优化算法 Duan, H., P.J.I.j.o.i.c. Qiao, and cybernetics, Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. 2014. 2014
21 灰狼优化算法 Mirjalili, S., S.M. Mirjalili, and A.J.A.i.e.s. Lewis, Grey wolf optimizer. 2014. 69: p. 46-61. 2014
22 物体碰撞优化算法 Kaveh, A., V.R.J.C. Mahdavi, and Structures, Colliding bodies optimization: a novel meta-heuristic method. 2014. 139: p. 18-27. 2014
23 水波优化 算法 Zheng, Y.-J.J.C. and O. Research, Water wave optimization: a new nature-inspired metaheuristic. 2015. 55: p. 1-11. 2015
24 闪电搜索算法 Shareef, H., A.A. Ibrahim, and A.H.J.A.S.C. Mutlag, Lightning search algorithm. 2015. 36: p. 315-333. 2015
25 Jaya算法 Rao, R.J.I.J.o.I.E.C., Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. 2016. 7(1): p. 19-34. 2016
26 蜻蜓算法 Mirjalili, S.J.N.C. and Applications, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. 2016. 27(4): p. 1053-1073. 2016
27 鲸鱼优化算法 Mirjalili, S. and A.J.A.i.e.s. Lewis, The whale optimization algorithm. 2016. 95: p. 51-67. 2016
28 多元宇宙优化算法 Mirjalili, S., et al., Multi-verse optimizer: a nature-inspired algorithm for global optimization. 2016. 27(2): p. 495-513. 2016
29 乌鸦搜索算法 Askarzadeh, A.J.C. and Structures, A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. 2016. 169: p. 1-12. 2016
30 蝴蝶算法 Qi, X., Y. Zhu, and H.J.J.o.c.s. Zhang, A new meta-heuristic butterfly-inspired algorithm. 2017. 23: p. 226-239. 2017
31 雷电附着优化算法 Nematollahi, A.F., A. Rahiminejad, and B.J.A.S.C. Vahidi, A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization. 2017. 59: p. 596-621. 2017
32 斑鬣狗优化算法 Dhiman, G. and V.J.A.i.E.S. Kumar, Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. 2017. 114: p. 48-70. 2017
33 松鼠搜索算法 Jain, M., et al., A novel nature-inspired algorithm for optimization: Squirrel search algorithm. 2019. 44: p. 148-175. 2019
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/142562.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • awk 用法示例大全[通俗易懂]

    awk 用法示例大全[通俗易懂]文章目录#删除temp文件的重复行awk’!($0inarray){array[$0];print}’temp#查看最长使用的10个unix命令awk'{print$1}’~/.bash_history|sort|uniq-c|sort-rn|head-n10#查看机器的ip列表ifconfig-a|awk’/Bcast/{print$2}’|cut-c5-19#查看机器的每个远程链接机器的连接数netstat-ant

  • redis mysql_redis和mysql的结合示例[通俗易懂]

    redis mysql_redis和mysql的结合示例[通俗易懂]mysql和redis的区别mysql是关系型数据库,主要用于存放持久化数据,将数据存储在硬盘中,读取速度较慢。redis是非关系型数据库,即将数据存储在缓存中,缓存的读取速度快,能够大大的提高运行效率,但是保存时间有限django中使用mysql的方法通过继承models.Model来生成数据库表,详情见Django模型的使用。django中使用redis的方法首先安装python库pip3i…

  • IntelliJ IDEA 2021.5 x64 激活码[在线序列号]

    IntelliJ IDEA 2021.5 x64 激活码[在线序列号],https://javaforall.cn/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

  • java将Word转换成PDF

    java将Word转换成PDF网上有很多将Word转换成PDF的方式,这里找了两种比较简单的工具:jacob和aspose。1.jacob使用Jacob需要一些环境的准备,首先需要Jacob的jar包:然后还需要将jacob版本对应的ddl文件放到jdk或jre的bin目录里:下面只需要使用写好的工具类就可以了:publicclassWord2PdfJacobUtil{ /*转PDF格…

  • pycharm连接不上mysql中的数据库时_python Mysql时间带t

    pycharm连接不上mysql中的数据库时_python Mysql时间带t在pycharm连接mysql数据库时候,会出现时区错误的情况。默认都是讲时区改成‘+8:00’就好了。修改方法打开mysqlsetglobaltime_zone=’+8:00’但是,第二天再打开时,又出现报错,如图所示为了永久解决。可以再my.ini文件中最后加上,setglobaltime_zone=’+8:00’。my.ini默认在C:\ProgramData\MySQL\MySQLServer8.0修改my.ini成功解决后患…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号