大家好,又见面了,我是你们的朋友全栈君。
匿名用户
1级
2016-11-22 回答
BIC需要三个 inputs (LLF , numParams , numObs)
*******************
%AICBIC Akaike and Bayesian information criteria for model order selection.
% models of the conditional mean and variance to a univariate return series,
% information criteria penalize models with additional parameters, AIC and
% either AIC or BIC, models that minimize the criteria are preferred.
% [AIC , BIC] = aicbic(LLF , NumParams , NumObs)
% Optional Inputs: NumObs
% Inputs:
% values associated with parameter estimates of various models. The LLF
% or the inference function GARCHINFER. Type “help garchfit” or “help
% garchinfer” for details.
% NumParams – Number of estimated parameters associated with each value
% vector the same length as LLF. All elements of NumParams must be
% GARCHCOUNT. Type “help garchcount” for details.
% Optional Input:
% value of LLF. NumObs is required for computing BIC, but is not needed
% vector the same length as LLF. All elements NumObs must be positive
%
% AIC – Vector of AIC statistics associated with each LLF objective
%
%
% function value. The BIC statistic is defined as:
% BIC = -2*LLF + NumParams*Log(NumObs)
%example
load garchdata
[m,n]=size(dem2gbp); %[1974,1]
spec11 = garchset(‘P’,1,’Q’,1,’Display’,’off’);
garchdisp(coeff11,errors11)
format long
[AIC,BIC]
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/142488.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...